MATH 433
Applied Algebra

Lecture 6:
Congruences (continued).
Modular arithmetic.



Congruences

Let n be a positive integer. The integers a and b
are called congruent modulo n if they have the
same remainder when divided by n. An equivalent
condition is that n divides the difference a — b.

Notation. a= b mod n or a= b (mod n).

Proposition If a = bmodn then for any c € Z,
(i) a+ cn = bmod n;

(i) a4+ c=b+ cmodn;

(iii) ac = bcmod n.



More properties of congruences

Proposition If a=a modn and b= b modn,
then (i) a+ b= 34 + b’ modn;

(ii)) a— b= 3 — b modn;

(iii) ab = a'b'mod n.

Proof: Since a= a’ modn and b= b'modn, the number n
divides a—a and b— Vb, ie., a—a =kn and b— b =Vn,
where k,¢ € Z. Then n also divides
(a+b)—(a+b)=(a—3a)+(b—b)=kn+{ln=(k+{)n,
(a—b)—(a—b)=(a—a)—(b—b')=kn—{ln= (k—{)n,
ab—ab =ab—ab +abl —ab =a(b—b)+(a—a)b
= a(ln) + (kn)b' = (al + kb')n.



Primes in arithmetic progressions

Theorem There are infinitely many prime numbers
of the form 4n+ 3, ne€ Z.

Idea of the proof: Let pi,po,...,px be primes different from
3 and satisfying p; = 3mod 4. Consider the number

N =4pp,...px + 3. By construction, N is not divisible by

p1, P2, ---,Px and 3. On the other hand, N must have a
prime divisor p = 3mod 4.

Theorem (Dirichlet 1837) Suppose a and d are
positive integers such that gcd(a,d) =1. Then
the arithmetic progression a,a+ d,a—+2d, ...
contains infinitely many prime numbers.



Divisibility of decimal integers

Let didk_1...d3drd; be the decimal notation of a positive
integer n (0 <d; <9). Then

n=d; +10d, + 102d3 4+ 10k_2dk—1 + 10k_1dk.

Proposition 1 The integer n is divisible by 2, 5 or 10 if and
only if the last digit d; is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or
100 if and only if dbd; is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only
if the sum of its digits dx + --- + db + d; is divisible by the
same number.

Proposition 4 The integer n is divisible by 11 if and only if
the alternating sum of its digits
(—1)k_1dk + -+ d3— dr+ d; is divisible by 11.

Hint: 10™ = 1mod9, 10" = 1mod 3, 10" = (—1)" mod 11.



Problem. Determine the last digit of 7291

The last digit is the remainder under division by 10.
We have 7! = 7mod 10 and 7? = 49 = 9mod 10.
Then

7?=72.7=9-7=63 =3(mod10).
Further,

7*=7.7=3.7=21=1(mod10).

Now it follows that 7"t* = 7" mod 10 for all n > 1.
Therefore the last digits of the numbers

7L 72,73, ...,7", ... form a periodic sequence with
period 4. Since 2019 = 3mod 4, the last digit of
72019 is the same as the last digit of 73, which is 3.



Problem. When the number 147 .2530. 4012 js
written out, how many consecutive zeroes are there

at the right-hand end?

The number of consecutive zeroes at the right-hand end is the
exponent of the largest power of 10 that divides our number.

As follows from the Unique Factorisation Theorem, a positive
integer A divides another positive integer B if and only if the
prime factorisation of A is part of the prime factorisation of B.

The prime factorisation of the given number is
147 . 2530 . 4012 — (2 . 7)7 . (52)30 . (23 . 5)12 — 243 . 572 . 77_
For any integer n > 1 the prime factorisation of 10" is 2"-5".

Hence 10" divides the given number if n < 43 and n < 72.
The largest number with this property is 43. Thus there are
43 zeroes at the right-hand end.



Congruence classes

Given an integer a, the congruence class of a modulo n is
the set of all integers congruent to a modulo n.

Notation. [a], or simply [a]. Also denoted a+ nZ as
[a]l, ={a+ nk: k € Z}.

Examples. [0], is the set of even integers, [1], is the set of
odd integers, [2]4 is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class
modulo n is the union of m/n congruence classes modulo m.
For example, [2]s = [2]s U [6]s.

The congruence class [0], is called the zero congruence
class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted Z,,.
It consists of n elements [0],, [1]4, [2]n; - - -, [P—1]n.



Modular arithmetic

Modular arithmetic is an arithmetic on the set Z,, for some
n > 1. The arithmetic operations on Z,, are defined as
follows. For any integers a and b, we let

[a], + [b], = [a+ b]n,
[a]n - [b]n = [a - b]m
[a], x [b], = [ab],.

Theorem The arithmetic operations on Z,, are well defined,
namely, they do not depend on the choice of representatives
a, b for the congruence classes.

Proof: Let a’ be another representative of [a], and b’ be
another representative of [b],. Then & = amodn and

b' = bmod n. According to a previously proved proposition,
this implies a8 +b' =a+ bmodn, & — b =a— bmodn
and a'b' = abmod n. In other words, [’ + b/], = [a + b],,
[ — ], =[a— b], and [a'b], = [ab],.



Invertible congruence classes

We say that a congruence class [a], is invertible (or the
integer a is invertible modulo n) if there exists a congruence
class [b], such that [a],[b], = [1],. If this is the case, then
[b],, is called the inverse of [a], and denoted [a] ;.

The set of all invertible congruence classes in Z, is denoted G,
or Z;.

A nonzero congruence class [a], is called a zero-divisor if
[a][b], = [0], for some [b], # [0],.

Examples. e In Zg, the congruence classes [1]g and [5]¢ are
invertible since [1]2 = [5]2 = [1]s. The classes [2]s, [3]s, and
[4]6 are zero-divisors since [2]g[3]6 = [4]6[3]6 = [O]6-

e In Z;, all nonzero congruence classes are invertible since
[1]7 = [2]7[4]7 = [3]+[5]7 = [6]F = [1]:.



