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Applied Algebra

Lecture 7:
Invertible congruence classes.



Congruence classes

Given an integer a, the congruence class of a
modulo n is the set of all integers congruent to a

modulo n.

Notation. [a]n or simply [a]. Also denoted a + nZ

as [a]n = {a + nk : k ∈ Z}.

For any integers a and b, the congruence classes [a]n
and [b]n either coincide, or else they are disjoint.

The set of all congruence classes modulo n is

denoted Zn. It consists of n elements
[0]n, [1]n, [2]n, . . . , [n−1]n, which form a partition of
the set Z.



Modular arithmetic

Modular arithmetic is an arithmetic on the set Zn

for some n ≥ 1. The arithmetic operations on Zn

are defined as follows. For any integers a and b, we
let

[a]n + [b]n = [a + b]n,

[a]n − [b]n = [a − b]n,

[a]n × [b]n = [ab]n.

Theorem The arithmetic operations on Zn are well

defined, namely, they do not depend on the choice
of representatives a, b for the congruence classes.



Invertible congruence classes

We say that a congruence class [a]n is invertible (or

the integer a is invertible modulo n) if there exists
a congruence class [b]n such that [a]n[b]n = [1]n.

If this is the case, then [b]n is called the inverse of
[a]n and denoted [a]−1

n
. Also, we say that b is the

(multiplicative) inverse of a modulo n.

The set of all invertible congruence classes in Zn is
denoted Gn or Z∗

n
.

A nonzero congruence class [a]n is called a

zero-divisor if [a]n[b]n = [0]n for some [b]n 6= [0]n.



Properties of invertible congruence classes

Theorem (i) If [a]n is invertible, then [a]−1

n
is also invertible

and ([a]−1

n
)−1 = [a]n.

(ii) The inverse [a]−1

n
is always unique.

(iii) If [a]n and [b]n are invertible, then the product [a]n[b]n is
also invertible and ([a]n[b]n)

−1 = [a]−1

n
[b]−1

n
.

(iv) Zero-divisors are not invertible.

Proof: (i) Let [b]n = [a]−1

n
. Then [b]n[a]n = [a]n[b]n = [1]n,

which means that [a]n = [b]−1

n
.

(ii) Suppose that [b]n and [b′]n are both inverses of [a]n.
Then [b]n = [b]n[1]n = [b]n[a]n[b

′]n = [1]n[b
′]n = [b′]n.

(iii) We only need to show that ([a]n[b]n)([a]
−1

n
[b]−1

n
) = [1]n.

Indeed, ([a]n[b]n)([a]
−1

n
[b]−1

n
) = [a]n[a]

−1

n
·[b]n[b]

−1

n
= [1]n[1]n = [1]n.

(iv) If [a]n is invertible and [a]n[b]n = [0]n, then
[b]n = [1]n[b]n = [a]−1

n
[a]n[b]n = [a]−1

n
[0]n = [0]n.

Therefore [a]n cannot be a zero-divisor.



Theorem A nonzero congruence class [a]n is
invertible if and only if gcd(a, n) = 1. Otherwise

[a]n is a zero-divisor.

Proof: Let d = gcd(a, n). If d > 1 then n/d and
a/d are integers, [n/d ]n 6= [0]n, and [a]n[n/d ]n =

= [an/d ]n = [a/d ]n[n]n = [a/d ]n[0]n = [0]n. Hence
[a]n is a zero-divisor.

Now consider the case gcd(a, n) = 1. In this case 1

is an integral linear combination of a and n:
ma + kn = 1 for some m, k ∈ Z. Then

[1]n = [ma + kn]n = [ma]n = [m]n[a]n.
Thus [a]n is invertible and [a]−1

n
= [m]n.



Problem. Find the inverse of 23 modulo 107.

Numbers 23 and 107 are coprime (they are actually prime).
We use the matrix method to represent 1 as an integral linear
combination of these numbers.
(

1 0 107
0 1 23

)

→

(

1 −4 15
0 1 23

)

→

(

1 −4 15
−1 5 8

)

→

(

2 −9 7
−1 5 8

)

→

(

2 −9 7
−3 14 1

)

→

(

23 −107 0
−3 14 1

)

From the 2nd row of the last matrix we read off that
(−3) · 107 + 14 · 23 = 1. It follows that

[1]107 = [(−3) · 107 + 14 · 23]107 = [14 · 23]107 = [14]107[23]107.

Thus [23]−1

107
= [14]107.



Problem. Find all integer solutions of the
equation 107m + 23n = 1.

From the solution of the previous problem we get

that
(−3) · 107 + 14 · 23 = 1,
23 · 107− 107 · 23 = 0.

It follows that we have solutions m = −3 + 23k ,
n = 14− 107k for any k ∈ Z.

These are all integer solutions!

Indeed, for any integer solution of the equation, the number n
is the inverse of 23 modulo 107. Since the inverse congruence
class [23]−1

107
= [14]107 is unique, it follows that n = 14− 107k

for some k ∈ Z. Then m = −3 + 23k for the same k.


