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Applied Algebra

Lecture 8:

Linear congruences.



Modular arithmetic

Given an integer a, the congruence class of a

modulo n is the set of all integers congruent to a

modulo n: [a]n = {a + nk : k ∈ Z}.

The set of all congruence classes modulo n is

denoted Zn. It consists of n elements.

The arithmetic operations on Zn are defined as
follows. For any integers a and b, we let

[a]n + [b]n = [a + b]n,

[a]n − [b]n = [a − b]n,

[a]n × [b]n = [ab]n.



Invertible congruence classes

We say that a congruence class [a]n is invertible

(or the integer a is invertible modulo n) if there is
a congruence class [b]n such that [a]n[b]n = [1]n.

If this is the case, then [b]n is called the inverse of
[a]n and denoted [a]−1

n
. Also, we say that b is a

multiplicative inverse of a modulo n.

Theorem A nonzero congruence class [a]n is
invertible if and only if gcd(a, n) = 1.

The set of all invertible congruence classes in Zn is

denoted Gn or Z∗
n
. This set is closed under

multiplication.



Linear congruences

Linear congruence is a congruence of the form ax ≡ bmod n,
where x is an integer variable. We can regard it as a linear
equation in Zn: [a]nX = [b]n.

In the case b = 1, solving the linear congruence is equivalent
to finding the inverse of the congruence class [a]n. In the case
b = 0, it is equivalent to determining if [a]n is a zero-divisor.

Theorem If the congruence class [a]n is invertible, then the
equation [a]nX = [b]n has a unique solution in Zn, which is
X = [a]−1

n
[b]n.

Proof: Suppose X ∈ Zn is a solution of the equation. Then
[a]−1

n
([a]nX ) = [a]−1

n
[b]n. We have

[a]−1

n
([a]nX ) = ([a]−1

n
[a]n)X = [1]nX = X .

Conversely, if X = [a]−1

n
[b]n, then

[a]nX = [a]n([a]
−1

n
[b]n) = ([a]n[a]

−1

n
)[b]n = [1]n[b]n = [b]n.



Problem 1. Solve the congruence
23x ≡ 6mod 107.

The numbers 23 and 107 are coprime. We know from the
previous lecture that [23]−1

107
= [14]107.

Hence [x ]107 = [23]−1

107
[6]107 = [14]107[6]107 = [84]107.

Problem 2. Solve the congruence 3x ≡ 5mod 15.

The congruence has no solutions. Indeed, 3x − 5 ≡ 1mod 3
so that 3x − 5 is never divisible by 3. As a consequence,
3x − 5 is not divisible by 15.

Problem 3. Solve the congruence 3x ≡ 6mod 15.

Checking all 15 elements of Z15, we find solutions:
x ≡ 2mod 15, x ≡ 7mod 15, and x ≡ 12mod 15.
Equivalently, x is a solution if and only if x ≡ 2mod 5.



More properties of congruences

Proposition 1 Let a, b ∈ Z and c , n ∈ P.

Then the congruence ac ≡ bc mod nc is
equivalent to a ≡ bmod n.

Proposition 2 Let a, b ∈ Z and c , n ∈ P.
If ac ≡ bc mod n and gcd(c , n) = 1, then

a ≡ bmod n.



Theorem The linear congruence ax ≡ bmod n has a
solution if and only if d = gcd(a, n) divides b. If this is the
case then the solution set consists of d congruence classes
modulo n that form a single congruence class modulo n/d .

Proof: If the congruence has a solution x , then ax = b + kn

for some k ∈ Z. Hence b = ax − kn, which is divisible by
gcd(a, n).

Conversely, assume that d divides b. Then the linear
congruence is equivalent to a′x ≡ b′ modm, where a′ = a/d ,
b′ = b/d and m = n/d . In other words, [a′]mX = [b′]m,
where X = [x ]m.

We have gcd(a′,m) = gcd(a/d , n/d) = gcd(a, n)/d = 1.
Hence the congruence class [a′]m is invertible. By a previously
proved theorem, all solutions x of the linear congruence form a
single congruence class modulo m, X = [a′]−1

m
[b′]m. This

congruence class splits into d distinct congruence classes
modulo n = md .



Problem. Solve the congruence 12x ≡ 6mod 21.

⇐⇒ 4x ≡ 2mod 7 ⇐⇒ 2x ≡ 1mod 7

⇐⇒ [x ]7 = [2]−1

7
= [4]7

⇐⇒ [x ]21 = [4]21 or [11]21 or [18]21.

Problem. Find all integer solutions of the
equation 12x − 21y = 6.

For any integer solution of the equation, the number x is a
solution of the linear congruence 12x ≡ 6mod 21. By the
above, x ≡ 4mod 7, that is, x = 4 + 7k for some k ∈ Z.
Then y = (12x − 6)/21 = (12(4 + 7k)− 6)/21 = 2 + 4k,
which is also integer. Thus the general integer solution is
x = 4 + 7k, y = 2 + 4k, where k ∈ Z.


