MATH 433
Applied Algebra

Lecture 29:
Cosets.
Lagrange’s Theorem.



Cosets

Definition. Let H be a subgroup of a group G. A coset

(or left coset) of the subgroup H in G is a set of the form

aH = {ah: h € H}, where a € G. Similarly, a right coset of H
in G is a set of the form Ha = {ha: he€ H}, where a € G.

Theorem Let H be a subgroup of G and define a relation R on G
by aRb <= a <€ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b~1a € H.

Reflexivity: aRa since a la=ec H.

Symmetry: aRb = b lacH = alb=(bla)lecH
—> bRa. Transitivity: aRb and bRc = b la,c"bc H
— cla=(c'b)(b7ta) e H = aRc.

Corollary The cosets of the subgroup H in G form a partition of
the set G.

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G. Clearly, the equivalence class of g is gH.



Examples of cosets
e G=7, H=nZ.

The coset of a € Z is [a], = a+ nZ, the congruence class of
a modulo n.

e G=R3 Histheplane x +2y — z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, Y0, 20) € R? is the plane x +2y — z = xg + 2y — 2o
parallel to H.

e G=15(n), H=A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

e G isany group, H=G.

There is only one coset, G.

e G is any group, H = {e}.

Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted o(G). Given a subgroup H of G, the number of
cosets of H in G is called the index of H in G and denoted
[G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G, then o(G) =[G : H] - o(H). In particular, the order of H
divides the order of G.

Proof: For any a € G define a function f : H — aH by
f(h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f(hl) = f(hz) — ah]_ = ah2 — h]_ = h2.

Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order of
any element g € G divides the order of G.

Proof: The order of g € G is the same as the order of the
cyclic group (g), which is a subgroup of G.

Corollary 2 If G is a finite group, then g°¢) = e
forall g€ G.

Proof: We have g" = e whenever n is a multiple of o(g).
By Corollary 1, o(G) is a multiple of o(g) for all g € G.



Corollaries of Lagrange’s Theorem

Corollary 3 (Fermat’s Little Theorem) |If pis a prime
number then a?~! =1 mod p for any integer a that is not a
multiple of p.

Proof: a”~' =1 mod p means that [a]5~! = [1],.

a is not a multiple of p means that [a], is in G,, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(G,) = p — 1 and apply Corollary 2.

Corollary 4 (Euler’'s Theorem) |If nis a positive integer
then a®(" =1 mod n for any integer a coprime with n.

Proof: a®™ =1 mod n means that [a]5"” = [1],.

a is coprime with n means that the congruence class [a], is in
G,. It remains to recall that o(G,) = ¢(n) and apply
Corollary 2.



Corollary 5 Any group G of prime order p is cyclic.

Proof: Take any element g € G different from e. Then
o(g) # 1, hence o(g) = p, and this is also the order of the
cyclic subgroup (g). It follows that (g) = G.

Corollary 6 Any group G of prime order has only
two subgroups: the trivial subgroup and G itself.
Proof: If H is a subgroup of G then o(H) divides o(G).

Since o(G) is prime, we have o(H) =1 or o(H) = o(G).
In the former case, H is trivial. In the latter case, H = G.

Corollary 7 The alternating group A(n), n > 2,
consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the
symmetric group S(n). The latter consists of n! elements.



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique
subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take
any divisor d of n. Since the order of g is n, it follows that
the element g/ has order d. Therefore a cyclic group

H = (g") has order d.

Now assume H’ is another subgroup of G of order d. The
group H' is cyclic since G is cyclic. Hence H' = (g*) for
some k € Z. Since the order of the element g* is d while the
order of g is n, it follows that gcd(n, k) = n/d. We know
that gcd(n, k) = an+ bk for some a,b € Z. Then

gn/d — gan+bk — gnagkb — (gn)a(gk)b — (gk)b c <gk> — H.
Consequently, H = (g"/4) C H'. However H and H’ both
consist of d elements. Thus H' = H.



