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Dynamical Systems and Chaos

Lecture 5:
Cantor sets.

Fractal dimension.
Metric spaces.



Cantor sets

Cantor Middle-Thirds Set

Definition. A subset Λ of the real line R is called a (general)
Cantor set if it is

• nonempty,

• compact, which means that Λ is bounded and closed,

• totally disconnected, which means that Λ contains no
intervals, and

• perfect, which means that Λ has no isolated points.



Unimodal maps

Let f : R → R be a continuous map such that

• f (0) = f (1) = 0;
• there exists a point xmax ∈ (0, 1) such that f is strictly
increasing on (−∞, xmax] and strictly decreasing on [xmax,∞);

• f (xmax) > 1.

The map f is called unimodal.



Itinerary map

Let f : R → R be a unimodal map, Λ be the set of all points
x ∈ R such that O+

f
(x) ⊂ [0, 1], and S : Λ → Σ2 be the

itinerary map introduced in the previous lecture.

Proposition 1 The set Λ is compact and has no isolated
points.

Proposition 2 S ◦ f = σ ◦ S on Λ, where σ : Σ2 → Σ2 is
the shift map.

Proposition 3 The itinerary map S is onto.

Proposition 4 The set Λ is a Cantor set if and only if the
itinerary map S is one-to-one.



In the case f is the tent map with µ = 3, the
interval A0 is the middle third of [0, 1] so that Λ3 is

exactly the Cantor Middle-Thirds Set.

The set Λ3 consists of those points x ∈ [0, 1] that
admit a ternary expansion 0.s1s2 . . . without any

1’s (only 0’s and 2’s).



Fractal dimension
The unit interval [0, 1] is self-similar in the following sense. If
you scale it by a factor of n (where n is a whole number), then
it can be cut into n unit intervals. Likewise, the unit square
[0, 1]× [0, 1] is self-similar: if you scale it by a factor of n,
then it can be cut into n2 unit squares. Likewise, the unit box
[0, 1]× [0, 1]× [0, 1] is self-similar: if you scale it by a factor
of n, then it can be cut into n3 unit boxes.

The invariant Cantor set Λµ of the tent map Tµ (µ > 2) is
self-similar as well. When you scale it by a factor of µ, you
get 2 copies of the original set. Scaling by a factor of µk

produces 2k copies of the original set.

Consequently, the dimension of Λµ is log
µ
2 < 1.



General Cantor sets

Definition. A subset Λ of the real line R is called a (general)
Cantor set if it is

• nonempty,

• compact, which means that Λ is bounded and closed,

• totally disconnected, which means that Λ contains no
intervals, and

• perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic.
That is, if Λ and Λ′ are Cantor sets, then there exists a
homeomorphism φ : Λ → Λ′ (an invertible map such that
both φ and φ−1 are continuous).

Furthermore, the homeomorphism φ can be chosen strictly
increasing, in which case it can be extended to a
homeomorphism φ̃ : R → R.



An open subset U ⊂ R is a union of open intervals. An open
interval (a, b) is called a maximal subinterval of U if there
is no other interval (c, d) such that (a, b) ⊂ (c, d) ⊂ U.

Lemma 1 Any point of U is contained in a maximal
subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not
belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal
subintervals.

Lemma 5 If Λ is a Cantor set, then for any two maximal
subintervals of R \ Λ there is another maximal subinterval
that lies between them.

Lemma 6 If Λ,Λ′ are Cantor sets sets then there exists a
monotone one-to-one correspondence between maximal
subintervals of their complements.



Metric space

Definition. Given a nonempty set X , a metric (or distance
function) on X is a function d : X × X → R that satisfies
the following conditions:

• (positivity) d(x , y ) ≥ 0 for all x , y ∈ X ; moreover,
d(x , y ) = 0 if and only if x = y ;

• (symmetry) d(x , y ) = d(y , x) for all x , y ∈ X ;

• (triangle inequality) d(x , y ) ≤ d(x , z) + d(z , y ) for all
x , y , z ∈ X .
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A set endowed with a metric is called a metric space.



Examples of metric spaces

• Real line

X = R, d(x , y ) = |y − x |.

• Euclidean space

X = R
n, d(x, y) =

√

(y1− x1)2+ (y2− x2)2+ · · ·+ (yn − xn)2.

• Normed vector space

X : vector space with a norm ‖ · ‖, d(x, y) = ‖y− x‖.

• Discrete metric space

X : any nonempty set, d(x , y ) = 1 if x 6= y and d(x , y ) = 0
if x = y .

• Subspace of a metric space

X : nonempty subset of a metric space Y with a distance
function ρ : Y × Y → R, d is the restriction of ρ to X × X .



Convergence and continuity

Suppose (X , d) is a metric space, that is, X is a

set and d is a metric on X .

We say that a sequence of points x1, x2, . . . of the
set X converges to a point y ∈ X if d(xn, y) → 0

as n → ∞.

Given another metric space (Y , ρ) and a function

f : X → Y , we say that f is continuous at a
point x0 ∈ X if for every ε > 0 there exists δ > 0
such that d(x , x0) < δ =⇒ ρ(f (x), f (x0)) < ε.

We say that the function f is continuous on a set
U ⊂ X if it is continuous at each point of U .



Space of infinite sequences

Let A be a finite set. We denote by ΣA the set of all infinite
sequences s = (s1s2 . . . ), si ∈ A. Elements of ΣA are also
referred to as infinite words over the alphabet A.

For any infinite sequences s = (s1s2 . . . ) and t = (t1t2 . . . ) in
ΣA, let d(s, t) = 2−n if si = ti for 1 ≤ i ≤ n while
sn+1 6= tn+1. Also, let d(s, t) = 0 if si = ti for all i ≥ 1.

Proposition The function d is a metric on ΣA.

Two infinite words are considered close in the metric space
(ΣA, d) if they have a long common beginning.

Suppose f : R → R is a unimodal map that admits an
invariant Cantor set Λ ⊂ [0, 1]. Let S : Λ → Σ2 = Σ{0,1} be
the itinerary map.

Theorem The itinerary map S is continuous.


