MATH 614
Dynamical Systems and Chaos

Lecture 12:
Sharkovskii’s theorem (continued).



Sharkovskii’s Theorem

The Sharkovskii ordering is the following strict linear
ordering of the natural numbers:

3 > 5 > 7 > 9 >
> 23 > 25> 271> 29 >
> 22.3 > 22.5 > 22.7 > 2°2.9 >

> 2k > > 22> 22 > 2> 1

Theorem 1 Suppose f : J — J is a continuous map of an
interval J C R. If f admits a periodic point of prime period n
and n> m for some m € N, then f admits a periodic point
of prime period m as well.

Theorem 2 Suppose P is a set of natural numbers such that
ne P and nt>m imply me P forall m,ne N. Then
there exists a continuous map f : R — R with P as the set of
prime periods of its periodic points.



Suppose f : J — J is a continuous map of an interval J C R.
Given two closed bounded intervals 1, C J, we write and

draw if f(h) D kL (h covers k under action of f).

Lemma 1 If / — [, then the interval / contains a fixed point
of the map f.

Lemma 2 |If the map f has a periodic orbit, then it has a
fixed point.

Proof: Suppose x is a periodic point of f of prime period n.
In the case n =1, we are done. Otherwise let xi,x,..., X,
be the list of all points of the orbit O (x) ordered so that

x1 < Xp < ---<x, Notethat f(x;) # x; for all i. In
particular, f(x1) > x; while f(x,) < x,.

Let j be the largest index satisfying f(x;) > x;. Then j < n,
f(x;) > xj+1, and f(xj+1) < x;. The Intermediate Value
Theorem implies that [x;, xj+1] — [X;, Xj+1]. By Lemma 1, the
map f has a fixed point in the interval [x;, x;;1].



Lemma 3 If /| — I’, then there exists a closed interval
lo € | such that f maps /y onto /’.

Proof: Let I'=[a,b]. Then A=/nf"(a) and

B = 1N f~Y(b) are nonempty compact sets. It follows that
the distance function d(x,y) = |y — x| attains its minimum
on the set A x B at some point (xo, yo). Note that xy # yo
since ANB = (). Let Iy denote the closed interval with
endpoints xg and yp. Then Iy C /, the endpoints of |y are
mapped to a and b, and no interior point of /y is mapped to a
or b. The Intermediate Value Theorem implies that f(lp)=1".

Lemmad If | L —---— I, — I, then there exists a

fixed point x of " such that x€ h, f(x)€h, ..., f"H(x) € l,.
Proof: It follows by induction from Lemma 3 that there exist
closed intervals I{ C h, I C bk, ..., Il C I, such that f maps

I; onto I/, for 1 <i < n—1 and also maps /; onto /;. As a
consequence, f” maps /] onto /;. Lemma 1 implies that "
has a fixed point x € I{. By construction, f/(x) e I! C I; for
0<i<n-1.



Proposition 5 If the map f has a periodic point of prime
period 3, then it has periodic points of any prime period.

Proof: Suppose xi, x»,x3 are points forming a periodic orbit
of f, ordered so that x; < x> < x3. We have that either
f(x1) = x, f(x) =x3, f(x3) =x1, orelse f(x1) = x3,

f(x2) = x1, f(x3) = x2. In the first case, let /; = [xp, x3] and
b = [x1, x2]. Otherwise we let | = [x1, x2] and L = [x2, x3].
Then Oll = /2, ie., I1 — /2 — I1 and I1 — /1.

The map f has a periodic point of prime period 3. By Lemma
2, it also has a fixed point. To find a periodic point of prime
period n, where n =2 or n> 4, we notice that

/2—>ll—>/1—>"'—>/1—>/2.

n—1 times
By Lemma 4, there exists x € , such that f"(x) = x and
fi(x)e h for 1 <i<n—1. If x¢ I, we obtain that n is
the prime period of x. Otherwise x = x,, which leads to a
contradiction.




Proposition 6 If the map f has a periodic point of odd
prime period n > 5, then it has a periodic point of any prime
period m < n.

Proof: It is no loss to assume that f has no periodic points of

odd prime periods p, 1 < p < n. Let xi,x,...,x, be points

of a periodic orbit of prime period n, x; < xp < --- < X,.

First we show that one can choose k > 2 distinct intervals

li, b, ... Ik among [x1, %], [x2, x3],- .., [Xa—1, Xn] that satisfy
0

] - ll\/

x

Then we show that, in fact, k =n— 1.



First we show that one can choose k > 2 distinct intervals
li, b, ... Ik among [x1, %], [x2, x3],- .., [Xa—1, Xn] that satisfy
/1—)/2—>"'—>/k—>/1 and /1—)/1.

Let h = [x;, xj+1], where j is the largest index satisfying
f(x;) > x;. Then f(x;) > x;j+1 and f(xj+1) < x;, which
implies that I, — I.

Further, there is an interval I, = [x;, x;11] # h such that
f(x;) and f(x;11) are on different sides of /; so that I, — I.

Indeed, otherwise f would move each x; to the other side of /;,
which is impossible since n is odd.

Next there are intervals b, ..., I, of the form [x, x,;1] such
that h,bh,..., I aredistinctand |, = b — -+ = [, = .

Clearly, k < n—1. Infact, k=n—1 as otherwise we would
get a periodic orbit of prime period n— 2 from the chain

k—=h—=>h—=-—>h—=>hb=>h—=- =k

-~

n—k—1 times



For any diagram of this kind, kK =n — 1.



As a consequence, Is A I, if t>s+1 and I A I if
1 <s<n—1. It follows that, up to the mirror image, there
is only one possible ordering of the intervals I, b, .
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This leads to a more refined diagram of coverings:
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As a consequence, I; A I, if t>s+1 and [ A L if
1 <s<n—1. It follows that, up to the mirror image, there
is only one possible ordering of the intervals I, b, ..., [, 1:

m Iy -2

n-1 2

==

This leads to a more refined diagram of coverings:
/1 — /1, I1 — /2 — = /n—l — /1, and ln—l — /n—2s-

We use this diagram and Lemma 4 to obtain a periodic orbit
of f of prime period m for every natural number m < n.
Namely, in the case m > n— 1 we use a chain

her—h—-h— - —=h—=>hb—=>5K—= - —1_4.

'

m—n+2 times

In the case 1 < m < n—1, the number m is even, m = 2s,
and we use a chain 1 — I, 05 = 1 0541 — -+ — I,_1.

Finally, in the case m =1, we use the chain ; — /.



Lemma 7 2nr>>2m if and only if n>m for all n,m € N.

Lemma 8 If x is a periodic point of the map f of prime
period n, then x is also a periodic point of f¥ of prime period

n/ ged(n, k).

Lemma 9 Assume that for some n,m > 1, period n implies
period m. Then period 2n implies period 2m.

Proof: Suppose x is a periodic point of the map f of prime
period 2n. Then x is a periodic point of 2 of prime period n.
By assumption, f2 also has a periodic point y of prime period
m. Then f2"(y)=(f?)"(y)=y so that y is a periodic point
of f of prime period ¢, where ¢ divides 2m. By Lemma 8,
{=2m if {iseven and ¢/ = m if £ is odd. In the former case,
we are done. In the latter case, we apply Proposition 5 or 6.

Lemma 10 If f has a periodic point of prime period 4, then
it also has a periodic point of prime period 2.



On the converse of Sharkovskii’'s Theorem

Let n € N. Consider an arbitrary permutation 7 of
{1,2,...,n} that consists of a single cycle of
length n.

We can extend 7 to a continuous function

f :[1,n] — [1, n] so that f be linear on each of the
intervals [1,2], [2,3],...,[n—1,n]. Further, we
can extend f to a continuous function f : R — R
so that f be constant on (—o0,1] and on [n, c0).
Then all periodic points of f are in [1, n].

By construction, f has a periodic point of prime
period n. One can try to pick 7 so that there are
no periodic points of prime periods m > n.



Period 5 orbit, but no period 3 orbit

Example. n=5, m=(13425).

! 2 3 4 5

We obtain that f3([1,2]) = [2,5], 3([2,3]) = [3, 5],
3([3,4]) = [1,5], f3([4,5]) = [1,4]. Moreover, f3 is strictly
decreasing on [3,4]. Therefore f> has a unique fixed point,
which is also a fixed point of f.



Period 5 orbit, but no period 3 orbit

Example. n=5, m=(13425).

Lemma The map f is expansive on the interval [1,5].

Theorem The map f is chaotic on the interval [1,5].



