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Dynamical Systems and Chaos

Lecture 14:

Orbit diagram for the logistic map.

Topological Markov chains.



Logistic map

Logistic map Fµ(x) = µx(1− x)



Period doubling: logistic map

Logistic map Fµ(x) = µx(1− x), µ ≈ 3, x ≈ 2/3.

Consider graphs of F 2
µ
for µ ≈ 3:

For µ < 3, the fixed point pµ = 1− µ−1 is attracting. At
µ = 3, it is not hyperbolic. For µ > 3, the fixed point pµ is
repelling and there is also an attracting periodic orbit of period
2.



Period-doubling route to chaos

The logistic map Fµ has the period doubling bifurcation when
the parameter µ passes 3. As µ increases beyond 3, the map
undergoes repeated period doublings, namely, the period
doubling bifurcation for F 2

µ
, then for F 4

µ
, then for F 8

µ
, and so

on.
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However the period doubling regime ends before µ reaches 4
when the hard chaos develops. To get more information about
various kinds of bifurcations for the logistic map, we create the
orbit diagram as follows. For many equally spaced values of
µ, we compute the first 500 points of the orbit of 1/2, then
plot the last 400 of them on the (λ, x)-plane. It is known
that the map Fµ has at most one attracting periodic orbit and
that the orbit of 1/2 is always attracted to it.



Orbit diagram for the logistic map



Feigenbaum’s universality

For any integer n ≥ 1 let µn be the smallest value of the
parameter µ such that the logistic map Fµ(x) = µx(1− x)
admits a periodic orbit of prime period n for all µ > µn.

The period-doubling bifurcations occur at µ = µ2, µ4, µ8, . . .
The limit µ∞ = lim

k→∞
µ2k is the smallest value of the

parameter µ at which the logistic map starts showing signs of
chaotic behaviour.

There exists a limit

lim
i→∞

µ2i − µ2i−1

µ2i+1 − µ2i

= δ ≈ 4.6692

called the Feigenbaum constant.



Feigenbaum’s universality

Suppose n is an integer such that n > 1 and n is

not a power of 2. For all µ > µn close enough to
µn, the periodic orbit of prime period n is

attracting. As the value of µ increases, this orbit
goes through a series of period doublings that occur
at some values µ = µn,2, µn,4, µn,8, . . .

Moreover, the limit

lim
i→∞

µn,2i − µn,2i−1

µn,2i+1 − µn,2i

exists and it is the same constant δ as above.



Renormalization

Graph of Fµ Graph of F 2
µ



Subshift

Given a finite set A (an alphabet), we denote by ΣA the set of
all infinite words over A, i.e., infinite sequences s = (s1s2 . . . ),
si ∈ A. The shift transformation σ : ΣA → ΣA is defined by
σ(s0s1s2 . . . ) = (s1s2 . . . ).

Suppose Σ′ is a closed subset of the space ΣA invariant under
the shift σ, i.e., σ(Σ′) ⊂ Σ′. The restriction of the shift σ to
the set Σ′ is called a subshift.

Suppose W is a collection of finite words in the alphabet A.
Let Σ′ be the set of all s ∈ ΣA that do not contain any
element of W as a subword. Then Σ′ is a closed,
shift-invariant set. Any subshift can be defined this way.

In the case the set W of “forbidden” words can be chosen
finite, the subshift is called a subshift of finite type. If,
additionally, all forbidden words are of length 2, then the
subshift is called a topological Markov chain.



Topological Markov chains

A topological Markov chain can be defined by a directed graph
with the vertex set A where edges correspond to allowed
words of length 2.
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M =
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0 1 1
0 1 1
1 0 0





To any topological Markov chain we associate a matrix
M = (mij) whose rows and columns are indexed by A and
mij = 1 or 0 if the word ij is allowed (resp., forbidden). The
matrix is actually the incidence matrix of the above graph.

Theorem If for some n ≥ 1 all entries of the matrix Mn are
positive, then the topological Markov chain is chaotic.



Example

For some value of µ, the point 1/2 is a periodic
point of period 3 for the logistic map Fµ. Let

I0 = [a, b] and I1 = [b, c]. The covering diagram
of the intervals Ii gives rise to a topological Markov

chain over the alphabet {0, 1}.



Example

Let I1 = [1, 2], I2 = [2, 3], I3 = [3, 4], and
I4 = [4, 5]. The covering diagram of the intervals Ii
gives rise to a topological Markov chain over the
alphabet {1, 2, 3, 4}. Any admissible infinite word
is realized as the itinerary of some point x ∈ [1, 5].



Subshifts of finite type

Theorem Any subshift of finite type is
topologically conjugate to a topological Markov

chain.

Example. A = {0, 1}, W = {00, 111}.

Let us introduce a new alphabet

A′ = {[00], [01], [10], [11]}

and an encoding π : ΣA → ΣA′ given by

π(s1s2s3 . . . ) = ([s1s2][s2s3][s3s4] . . . ).

For any subshift of finite type over A with forbidden words of
length at most 3, this encoding provides a topological
conjugacy with a topological Markov chain over A′.


