MATH 614
Dynamical Systems and Chaos

Lecture 15:
Maps of the circle.



Circle S1.

St={(x,y) eR?: [xP+ [y =1}
St={zeC:|z] =1}

T! = R/Z
T! = R/277Z
a: St —0,2m),

angular coordinate
a: St R/27Z - R
(multi-valued function)




¢: R — S,

d(x) = (cosx,sinx), S!cC R2

P(x) = e* = cosx +isinx, S!cC.
¢: wrapping map

d(x + 27k) = ¢(x), k € Z.

a € R is an angular coordinate of x € St if and
only if ¢(a) = x.

For any arc v C S! there exists a continuous
branch o : v — R of the angular coordinate.

If a;:v— R and ay: vy — R are two continuous
branches then «; — a» is a constant 27k, k € 7.



Examples of continuous branches:
a: S\ {1} — (0,27),
a: ST\ {-1} = (-, 7).

»




Example. f:S' — S', f:z+s z> (doubling map),
in angular coordinates: « — 2« (mod 27).

The doubling map: smooth, 2-to-1, no critical points.

Theorem The doubling map is chaotic.

Sketch of the proof: If 7 is a short arc, then f(7) is an arc
twice as long ( = expansiveness). Moreover, f"(y) = S!
for n large enough ( = topological transitivity).

« has finite orbit if o« = 27m/k, where m and k are coprime
integers. « is periodic if k is odd.



Orientation-preserving and orientation-reversing

The real line R has two orientations.

For maps of an interval:
orientation-preserving = monotone increasing,
orientation-reversing = monotone decreasing.

The circle St also has two orientations
(clockwise and counterclockwise).

Given amap f:S' — S!, wesaythatamap F:R —+ R isa
lift of fif fop =poF, where ¢ : R — S! is the wrapping
map. Any continuous map f : S! — S! admits a continuous
lift F. The lift satisfies F(x +271) — F(x) = 2wk for some

k € Z and all x € R. If Fy is another continuous lift of f,
then F — Fy is a constant function.

A continuous map f : S — S! is orientation-preserving
(resp., orientation-reversing) if so is the continuous lift of f.



Maps of the circle A

f: Sl - St
f an orientation-preserving homeomorphism.



Rotations of the circle

»




Rotations of the circle

R, : S' — S, rotation by angle w € R.
R.(z) = e“z, complex coordinate z;
R.(a) = a +w (mod 27), angular coordinate .

Each R, is an orientation-preserving diffeomorphism;
each R, is an isometry;
each R, preserves Lebesgue measure on St

R, is a one-parameter family of maps.
R, is a transformation group.

Indeed, R, R., = Ro,1w,, R;P=R_,.
It follows that R = R,,, n=1,2,....
Also, Ry =1id and R .o« = R,, k € Z.



An angle w is called rational if w = rm, r € Q.
Otherwise w is an irrational angle.

If w is a rational angle then R, is a periodic map.
All points of S! are periodic of the same period.

If w=27wm/n, where m and n are coprime
integers, n > 0, then the period of R, is n.

If w is irrational then R, has no periodic points.

If w is irrational then R, is minimal: each orbit is
dense in S'.

If w is irrational then each orbit of R, is uniformly
distributed in S'.



Minimality

Theorem (Jacobi) Suppose w is an irrational
angle. Then the rotation R, is minimal: all orbits
of R, are dense in S*.

Proof: Take an arc v C S*. Then R"(y), n>1, isan arc
of the same length as 7. Since S! has finite length, the arcs
v, Ro(7), R3(7), ... cannot all be disjoint. Hence

R(v) N R™(y) # 0 for some 0 < n< m. But

ROV NRI(v) = RI(y N RI™"(7)) so v N RI™"(v) # 0.

Thus for any € > 0 there exists k > 1 such that Ru’j = Ry, Is
the rotation by an angle w’, |w/| < e. Note that w’ # 0 since
w is an irrational angle. Pick any x € S*. Let n= [2n/|w'|].
Then points x, Ry, (x) = RX(x), R (x) = R%(x), ...,

R (x) = R™(x) divide S* into arcs of length < e.



Uniform distribution

Let 7:S! — S be a homeomorphism and x € S*.
Consider the orbit x, T(x), T?(x),..., T"(x), ...

Let v C S! be an arc. By N(x,7v;n) denote the
number of integers k € {0,1,...,n— 1} such that
Tk(x) € v. The orbit of x is uniformly
distributed in S! if

i NGomin)

=1
=00 N(Xa Y2: n)

for any two arcs 1 and v, of the same length.



An equivalent condition:

i N(x,v1;n)  length(1)
im =
n—00 N(x, Yo; n) length(%)

for any arcs 1 and ;.

Another equivalent condition:

im NOx,vin) _ length(y)
| —
n—o00 n 21

for any arc 7.

Theorem (Kronecker-Weyl) Suppose w is an
irrational angle. Then all orbits of the rotation R,
are uniformly distributed in S*.



Fractional linear transformations of S!

A fractional linear transformation of the
complex plane C is given by

az+b
f b.c.d € C.
(Z) CZ + d a7 7C7 E

How can we tell if f(S?) = S'? This happens in
the case

f '¢ Z — 2
(2) = Zoz — 1

where |z| #1 and ¢ € R. Indeed, if z € S? then
z=1¢€" zy=re’

z—zy= e — relf = e (1 — reiﬁe_’a),

Zoz —1 =re el — 1 so that f(z) € S'.



Fractional linear transformations of S!

St={zeC:|z|] =1},

f.S st
o Z — 2
f —_alw
(Z) € 202—1’
where z € C, |z| #1 and w € R.

Fractional linear transformations of S! form a
group. Rotations of the circle form a subgroup
(ZO = O)

f is orientation-preserving if |z| < 1 and
orientation-reversing if |zo| > 1.



az+b az+ b
) g(Z): / ,7
cz+d cz+d

f(z) =

a2zt 1 b _ (ad' + bc')z + ab' + bd’

f
(e(2)) = =Yg (cd + d)z + bl + dd”

az+ b (2 b

cz+d c d)
Composition of fractional linear transformations
corresponds to matrix multiplication. Moreover,
the action of f on the circle corresponds to the

action of a linear transformation on lines going
through the origin.




o Z — 2

f(z) = —e"

202—1’

) iw/2 _ fw/2
_elw/z< L , ZE¢/2 )
_Zoe w e 1%
det =1 — |z]?, Tr=e“/?+ e /2 =2cos(w/2).
Characteristic equation:
A2 —2cos(w/2)A+ 1 — |z]? = 0.
Discriminant:

D = cos?(w/2) — 1+ |z|? = |z|* — sin®(w/2).

If D <0 then f is elliptic.
If D=0 then f is parabolic.
If D> 0 then f is hyperbolic.



Theorem (i) If f is elliptic then f has no fixed
points and is topologically conjugate to a rotation.
(ii) If f is parabolic then f has a unique fixed point,
which is neutral. Besides, the fixed point is weakly
semi-attracting and semi-repelling.

(iii) If f is hyperbolic then f has two fixed points;
one is attracting, the other is repelling.

Example. Given w € (0, 7), the one-parameter
family
z

wZ—r
f(z) =e" , 0<r«1
() =e 1—rz =1

undergoes a saddle-node bifurcation at
r=ry=|sin(w/2)|.



