worse-Smale unreomorphisms.

Morse-Smale diffeomorphisms.

MATH 614

Dynamical Systems and Chaos

Lecture 17a:

Maps of the circle

 $T:S^1\to S^1$,

 $\ensuremath{\mathcal{T}}$ an orientation-preserving homeomorphism.

Structurally stable maps of the circle

Definition. An orientation-preserving diffeomorphism $f: S^1 \to S^1$ is **Morse-Smale** if it has rational rotation number and all of its periodic points are hyperbolic.

If $\rho(f) = m/n$, a reduced fraction, then all periodic points of f have period n. Hence the only periodic points of f^n are fixed points, alternately sinks and sources around the circle.

Theorem A Morse-Smale diffeomorphism of the circle is C^1 -structurally stable.

Theorem (The Closing Lemma) Suppose f is a C^r -diffeomorphism of S^1 with an irrational rotation number. Then for any $\varepsilon>0$ there exists a diffeomorphism $g:S^1\to S^1$ with a rational rotation number such that f and g are C^r - ε close.

Theorem (Kupka-Smale) For any orientation-preserving C^r -diffeomorphism f of S^1 and any $\varepsilon > 0$ there exists a Morse-Smale diffeomorphism that is C^r - ε close to f.