MATH 614
Dynamical Systems and Chaos

Lecture 29:
Local holomorphic dynamics at fixed points.



Classification of periodic points

Let U C C be a domain and F : U — C be a holomorphic
function. Suppose that F(z) = zy for some z5 € U. The
fixed point z is called

e attracting if |F'(z)| < 1;

e repelling if |F'(z)| > 1;

e neutral if |F'(z)| = 1.

Now suppose that F"(z;) = z; for some z; € U and an
integer n > 1. The periodic point z; is called

e attracting if |(F")'(z1)| < 1;

o repelling if |(F")(z1)| > 1;
e neutral if [(F")(z1)| = 1.
")

The multiplier (F")(z;) is the same for all points in the orbit
of z;. In particular, all these points are of the same type as
z1. Note that the multiplier is preserved under any
holomorphic change of coordinates.



Hyperbolic fixed points

Theorem 1 Suppose z; is an attracting fixed point for a
holomorphic function F. Then there exist 6 > 0 and
0 < p <1 such that

F(2) = 20| < plz = 2

forany ze D={z€ C:|z— z| < d}. In particular,
lim F"(z) = zy forall z € D.

n—o0

Theorem 2 Suppose z is a repelling fixed point for a
holomorphic function F. Then there exist § >0 and M > 1
such that

IF(z) - 2| = Mz - 2|

forall ze D={zeC:|z—z| <d}. In particular,
for any z € D\ {z} thereis an integer n > 1 such that
F"(z) ¢ D.



Theorem 3 Let F be a holomorphic function at 0 such that
F(0) =0 and F'(0) = A, where 0 < |A\| < 1. Then there is
a neighborhood U of 0 and a holomorphic map h: U — C
such that Foh = hol in U, where L(z) = \z.

Idea of the proof: We are looking for a map h of the form
h(z) =z+ >, ciz', where ¢; are unknown coefficients.
Let F(z) =Az+ Y., a;z" be the Taylor expansion of F.
The condition Foh = hoL holds if

Z —)\z+z Nz

or, equwalently

SN =NaZ =3 alh(z))

From this equality of formal power series we can recursively
determine all coefficients ¢;. For example, ¢ = a»/(\* — \).
Then one has to prove that the radius of convergence for the
power series h(z) is positive.



Theorem 4 Let F be a holomorphic function at 0
such that F(0) =0 and F'(0) = A, where |\| > 1.
Then there is a neighborhood U of 0 and a
holomorphic map h: U — C such that Foh = holL
in L7Y(U), where L(z) = \z.

Idea of the proof: Since F'(0) # 0, the function F
is invertible in a neighborhood of 0. The inverse
function F~! is also holomorphic. The point 0 is an
attracting fixed point of F~1.

It remains to apply the previous theorem.



Neutral fixed points

Example. o F(z)=z+ z°.

The map has a fixed point at 0, which is neutral: F'(0) = 1.
The set Dy of all points z satisfying F"(z) - 0 as n — oo is
open and connected.

The fixed point 0 is one of the cusp points at the boundary of
Dy. The others correspond to eventually fixed points.



Neutral fixed points

Proposition Suppose a function F is holomorphic at 0 and
satisfies F(0) =0, F'(0) =1, F”(0) =2 so that

F(z) =z+ 2>+ O(|z]®) as z — 0.

Then there exists > 0 such that (i) all points in the disc
D_={ze€C:|z+p| < u} are attracted to 0; and (ii) all
points in the disc D, = {z € C: |z — pu| < u} are repelled
from 0.




Proof: We change coordinates using the function
H(z) = 1/z, which maps the discs D_ and D, onto
halfplanes Rez < —1/(2u) and Rez > 1/(2u).

The function F is changed to G(z) =1/F(1/z). Since
F(z) =z+ 2+ O(|z]*) as z — 0, it follows that
F(1/z2)=z'+z72+ 0(]z|®)
=z 11+ 271+ 0(|z]?) as z— oo
Then
G(z)=z(1+ 21+ O(|z[?) "
=z(1-z1+0(|z|?) =z— 1+ O(|z] ).
If 1o is small enough, then the halfplane Rez < —1/(2u) is

invariant under the map G while the halfplane Rez > 1/(2u)
is invariant under G1.



The proposition suggests that for most of the points in a
neighborhood of 0, the forward and backward orbits under the
map F both converge to 0.

V4

E. les. F(z) = .
xamples. o F(z) T
This is a Mobius transformation with 0 the only fixed point.

It follows that all forward and backward orbits converge to 0.

o F(z2)=z+2Z%
The orbits of all points on the ray z > 0 converge to co and
so are the orbits of all points in a small cusp about this ray.



