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On the uniform distribution of orbits of finitely
generated groups and semigroups of plane isometries

Ya. B. Vorobets

Abstract. Actions by isometries on a Euclidean plane of free groups and free semi-
groups with arbitrarily many generators and of free products of groups of order 2
are considered. It is shown that, in the typical case, all orbits of the action are
uniformly distributed in the plane. The actions for which the distribution of orbits
fails to be uniform are explicitly described.

Bibliography: 5 titles.

§ 1. Introduction

Let P be an affine Euclidean plane. We denote by G the group of isometries of
the plane P, that is, of transformations preserving the distances between points.
Each element of the group § is an affine transformation. We denote by G the
group of orientation-preserving isometries of the plane P and by Go the group of
parallel translations. The rotations of the plane form the set G \ Go, and the axial
and translational symmetries form the set G\ 94. The group G4 is an index-two
subgroup of §. The group Gg is a normal subgroup of § and G.

Let G be a countable group or semigroup. By an action of the (semi)group G
on the plane P by isometries we mean a (semi)group homomorphism d: G — G.
The orbit O4(x) of a point = € P under the action d is a sequence {d(g)z}4eq of
points in the plane indexed by elements of the (semi)group G. By an orbit of the
action d we mean an orbit of some point z € P under d.

In the present paper we assume that the group or semigroup G is finitely gener-
ated and, moreover, equipped with a fixed set of generators ay, ..., ax. This enables
one to introduce a length function on G. By the length |g| of an arbitrary element
g € G we mean the smallest integer m such that g can be expanded in a product
9192 - - gm of factors belonging to the sequence a1, ...,a; if G is a semigroup or to
the sequence ay, a;l, cee, A, a,:l if G is a group. The length of the identity ele-
ment is set to be equal to zero. The length function equips the (semi)group G with
a partial ordering which works on each orbit of the action d of this (semi)group.
We use this ordering to define the concept of uniformly distributed orbit. Let x
be a point and let E be a subset of the plane P. For a positive integer n we
denote by N ((17;) (E) the ratio of the number of elements g € G of length n for which

AMS 2000 Mathematics Subject Classification. Primary 22E30; Secondary 10K05, 37A05.
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d(g)x € E to the number of all elements of length n in G. An orbit Oy(z) is said
to be uniformly distributed in the plane if
NGB (B
n NN E ~ ul(E)
d.x 2) f 2
for each pair Ey, E» of Jordan measurable subsets of positive measure of the plane,
where p is Lebesgue measure on P.

Since the elements ay,...,ap generate the (semi)group G, it follows that the
action d is uniquely determined by the isometries 4, = d(ay), ..., Ay = d(ay), and
we denote this action by G[A;,..., A¢]. In what follows, for G we shall take the
free semigroup FSGy and the free group FGy with k generators, and also the free
product of k groups of order 2, Z3* = (ay,...,a) | a} = --- = a3 = 1). We note that
the actions of FGp[Ay, ..., Ax] and FSGy[4,,..., A;] are well defined for arbitrary
Ay,..., Ax € G. The action Z3¥[A,, ..., A] is well defined if Ay, ..., Ax are involu-
tions. In the present paper we study asymptotic properties of the means NC(I'L)(E)
and, in particular, the problem of the uniform distribution of orbits for actions d of
the above-mentioned kinds. The corresponding problem was posed (among others)
by Arnol’d and Krylov [1]. The investigations were started by Kazhdan [2] and
Guivarc’h [3] and continued by this author in [4] and [5]; the results thus obtained
are summarized in Theorems 1.1 and 1.2 stated below.

To formulate these theorems we require another definition. Let Q) be a strip (a
domain bounded by two parallel lines), a square, or a regular triangle in the plane P.
Consider the reflections of the figure @ relative to each of its boundary lines, repeat
the same for the reflections of (), and so on ad infinitum. As a result we obtain a
partitioning of the plane P by countably many straight lines into figures congruent
to (). We refer to this partitioning as the lattice generated by the figure @) and
denote it by L. We say that an isometry 4 € § takes the lattice L¢ to itself if
this isometry takes the lines defining the partitioning L to one another.

Theorem 1.1 [5]. Let A;,...,4; € G, and let
d:FSng[Al,Al‘l,...,Ak,A,jl],

d=FGp[Ar, ..., 4], or d = Z3Ay, ... Ay (if Ar, ..., A are involutions). If
the isometries Ay,..., Ay have no common fized point and preserve no common
lattice of the form L¢, where Q is a strip, a square, or a regular triangle, then
all orbits of the action d are wuniformly distributed in the plane. Moreover, the
estimates

LB~ < NYNE) < L(BEn™t,

~ d,x
where I and Iy are positive constants depending only on the action d, hold for
sufficiently large values of n for each Jordan-measurable set E of positive measure
and each point x.

Theorem 1.2 [4]. Let A1, A2 € G. If the isometries A, and Ay have no common
fized point and preserve no common lattice of the form Lg, where Q is a strip, a
square, or a regular triangle, then all orbits of the action d = FSGy[A41, 4,] are
uniformly distributed in the plane.

The main results of the present paper are the following two theorems. The first
of them refines Theorem 1.1 and the second generalizes Theorem 1.2.
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Theorem 1.3. Let A1,...,Ar € G and let

d=FSGor[A1, AT, .., Ay, ALY
or d = FGi[A1,..., Ay (or d = Z3MA1, ..., Ag), provided that Ay, ..., Ay are
involutions). If the isometries Ay, ..., Ax have no common fized point and preserve

no common lattice of the form Lo, where Q is a strip, a square, or a regular

triangle, then there exists Iy > 0 such that lim,_, nN;f;)(E) = Ioyp(E) for each
Jordan measurable subset E of P and each point x € P. In addition, oll orbits of
the action d are uniformly distributed in the plane.

Theorem 1.4. Let Ay,..., Ax € G. If the isometries Ay, ..., Ay have no common
fized point and preserve no common lattice of the form Lo, where Q is a strip, a
square, or a regular triangle, then the action d = FSGi[Ay, ..., A;] satisfies one of
the following two conditions:

(1) there exists Iy > 0 such that lim,_, nNéT;)(E) = Igu(E) for each (Jordan
measurable) subset E of P and each point & € P (in this case all orbits of the
action d are uniformly distributed in the plane);

(2) there exists Iy > 0 such that for each bounded subset E of P and each point

x € P the sequence {exp(]on)N[(lT; (E)} is bounded.

Condition (2) holds only in the following cases:

(i) Ai1,..., Ay are parallel translations by vectors with non-zero sum;

(i) each isometry A1,..., Ay is either a parallel translation or an axial or a
translational symmetry with axis parallel to a fized line l, and for some (and
therefore for each) point x € P the sum of the vectors Ajz—x, i =1,...,k,
is not orthogonal to the line l.

862, 3 of the present paper are devoted to the proof of Theorems 1.3 and 1.4.
We now discuss these statements. If the isometries Aj,..., A; have a common
fixed point, then each orbit of the action d lies on a circle with centre at this
point. If the isometries Ay, ..., 4 preserve a common lattice generated by a strip,
then each orbit lies in the union of countably many parallel lines with pairwise
distances bounded below by some ¢ > 0. If these isometries preserve a common
lattice generated by a square or a regular triangle, then the points in each orbit
form a discrete subset of the plane. In each case the orbits of the action d are
nowhere dense in the plane. On the other hand, if the orbits of the action d
are uniformly distributed in the plane P, then these orbits are dense in P. By the
general conjecture in [1], an arbitrary orbit of the action d is uniformly distributed
in the plane whenever this orbit is dense. As we see, Theorem 1.3 (as well as
Theorem 1.1) confirms this conjecture for the action of the groups FGj, and ALS
and Theorem 1.4 confirms this conjecture for the actions of the semigroup FSGy, in
all cases except (i) and (ii).

The author is indebted to R.1. Grigorchuk for a discussion of the results of the
paper and his constant support.

§ 2. Uniform distribution

For an isometry A € G we denote by u[A] the linear operator acting on functions
in the plane P by the formula (u[A]f)(z) = f(Az), 2 € P. The restriction of u[A] to
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the space Ly (P, 1) is a unitary operator. We denote by U the class of operators that
are finite linear combinations of operators of the form u[A]. Since u[AJu[B] = u[BA]
for A, B € G, the class U is an operator algebra.

We denote by F' the Fourier transformation of R2. We regard F' as a unitary
automorphism of the space Ly(R?). The action of the operators F and F~! on a
function f € Li(R?) N Ly(R?) is described by the formulae

FHW) = 3= [ 1) de,

(F~1f)(x) = (Ef)(-a).

Let J be the class of functions f € L;(R*) N Ly(R?) whose Fourier image Ff
is differentiable and has compact support. We introduce a Cartesian coordinate
system ¢ in the plane P and treat £ as an isometric map of P onto the Euclidean
space R?. The ¢-coordinates enable one to regard an arbitrary function f on the
plane P as a function on R? (by identifying it with the function F€7Y). In particular,
one can regard J as a class of functions on the plane P.

Lemma 2.1 [5]. The class F does not depend on the choice of Cartesian coordinates
on the plane P and is invariant with respect to operators in the algebra U. For each
Jordan measurable subset E of P and each ¢ > 0 there exists a pair of functions

T+, f- € F such that f_ < xg < fy in the entire plane and /(f+ —fo)du<e.

We denote by the symbol S! of a circle the quotient space R/27Z equipped with
the natural topology and Lebesgue measure. An important role in what follows is
played by the map ®: S — R* given by the formula () = (cost,sint), t € R/27Z.
For each R > 0 the map R® is a homeomorphism of S! onto the circle of radius R
in R* with centre at the origin. Let f € L; (R?)NLy(R?). Then the Fourier image Ff
of fis continuous. For each R > 0 we denote by fr the continuous function on S!
defined by the formula fr(t) = (Ff)(R®(t)), t € S'. The function fr is called the
radial component of f corresponding to the radius R.

The Cartesian coordinate system ¢ enables one to regard isometries in the
group § as transformations of R? and, accordingly, to regard operators in the alge-
bra U as operators acting on functions on RZ. By the radial operator up corres-
ponding to v € U and a radius R > 0 we mean a bounded linear operator
on Ly(S') taking the radial component fg of each function J € Li(R*) N Ly(R?)
to the radial component (uf)g of the function uf. We note that the definition of
the operator ug depends on the coordinate system &.

Lemma 2.2 [5]. The radial operator ug is uniquely defined for each v € U and
each R > 0. For each R > 0 the correspondence u — ug is a homomorphism of the
algebra U into the algebra of linear operators in Ly(SY). The radial operator u[A]R
is unitary for each A € G and each R > 0. If A is an isometry preserving the
origin, then ulA|rh = h® 1 A® for all R > 0 and h € Ly(SY). If A is the parallel
translation by a vector v € R?, then u[A|r is the operator of multiplication by the
function e (P

Let G be a finitely generated group or semigroup with distinguished set of gen-
erators and let d be an action of G in the plane P by isometries. We assign to the

& Ko
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action d a sequence of averaging operators C©, C C() . belonging to the

algebra U. The operator C(*) is defined by the equality
C™ =m;t " uld(g)]
lgl=n

where m,, is the number of elements of length n in G. If GG is a semigroup without
an identity element, then the operator C®) is not defined.

be the radial operators corre-
i some coordinate system &.

Proposition 2.3. Let CI(?"), R>0n=01,...,
sponding to the averaging operators C© C(1) . .
Suppose that the operators CI(%") have the following properties:

(P1) there exist positive constants Iy, Is, and Ry such that

||Cn H (1—[2R) O<R<R0;

(P1b) there exist positive constants Iy and Ry such that
Ro
n/ R(C)(Q")l, DdR— Iy asn — oo;
0

(P2) for all Ry and Ry, 0 < Ry < Ry, there exist constants I > 0 and p € (0,1)
such that ||C'(" | < Ip™ for Ry < R < R».
Then
lim nN (E) = (27) 2 Iou(E)
n—oc
for each Jordan measurable subset E of P and each point x € P. As a consequence,
every orbit of the action d is uniformly distributed in the plane.

Proof. Since |(Cgl)1,1)| < 27r||CI({n)||7 it follows from property (P2) that for each

1

R, > 0 the quantity n/ R(C'I(Qn)l7 1) dR approaches zero as n — oc. Thus,

R
the property (P1b) persistg if one chooses the constant Ry in an arbitrary way,
and the value of the constant Iy does not depend on this arbitrariness. This
enables one to assume that the constant Ry in conditions (P1) and (P1b) is
the same and LR < 1. Then for 0 < R < Ry we have the inequalities
0 <1~ IR? < exp(—I,R?); as a consequence, ||C’( || < It exp(—IznR?).

We claim that the validity of properties (P1), (P1b), (P2) is independent of the
choice of the coordinate system in which one calculates the radial operators Cg’)
and so is also the value of the constant Ij in the condition (P1b). Let & be a Cartes-
ian coordinate system in the plane P distinct from £. Let 5;1"), R>0,n=0,1,...,
be the family of radial operators corresponding to the operators C© C™M ... in
the coordinate system &. We set A = £71£,. Obviously, A € G. One can readily see
that the operator C(™ acts on functions on R? with respect to the coordinate sys-
tem & in just the same way as the operator u[A]~1C (" u[A] acts on these functions
with respect to the coordinate system £. Hence 5;{*) = u[4] (n)u[ A] R, where the
operator u[A]p is calculated in the coordinate system £. Since the operator u[A]g is
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unitary, it follows that |C7]] = [|CW]| and (CGV1,1) = (CY (u[A]r1), u[A]r1).
By the first equality properties (P1) and (P2) do not depend on the choice of the
coordinate system, and by the second

(G, 1) = (C81, 1)) < 4x]| OS2 sup [u[A]p1 — 1].

By Lemma 2.2 we obtain u[A]gl = e!f{®:¥)  where the vector v € R? depends only
on 4 and & Hence for 0 < R < Ry we have sup |u[A]gl — 1} < IR, where the

constant I, > 0 depends only on A4, £, and Ry. Moreover, |((~71({1') 1,1)— (Cgl) L1 <
47TI*R“C1 || € 4w, I Rexp(—IynR?). As a consequence, we obtain

Ry . Ro ; .
n./ R|(CUM1,1) - (Cl({l)l,l)ldR<47rI*Iln/ R?exp(—LnR®)dR
J0 0
‘IZI/QRQ ) \
= 47rI*Iln_1/2/ R*exp(—,R*)dR
J0

<47r1*11n*‘/'~’/ R%exp(—LLR?)dR,

0

and the right-hand side approaches zero as n — oo. Thus, the operators 5’;{")

similarly to the CI(?”), have property (P1b) with the same value of the constant Iy.

We now choose a point # € P. In accordance with the above, one can assume
without loss of generality that  is the origin of the system €. Consider an arbitrary
function f € J. For a positive integer n we set,

Ro
a,=2m) [ R(CUV1,1)dR,
4]

() = (€ (o) = [ 1),

Then
(€™ 1)) =0ty [ fdutn 5,01,

By Lemma 2.1, C" f € F. Regarding C" f as a function on R® (with respect to
the &-coordinates) we obtain

1

(© 1)@ = 5= [ (FC = o [ RE fr1)dm

Bearing in mind that /fd/t = 27 (Ff)(0) and [(CYVh,1)| < 2 7r|[C(”)||sup|h| for
| <J

each function h € Ly(S'), we arrive at the estimate |3, (f) 1. + Jo.n, where

Ry
Jin = n‘3/2/ RHC%l)H sup|fr — (Ff)(0)|dR,
0

Jom = 02 /R RIICS" || sup | fr| dR.
- 0

On the uniform dist
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Since f € F, there exist constants B > Ry and Iy > Osuch that fr = 0for R > R,
and sup |fr — (Ff)(0)] < Iy R for 0 < R < Ryp. Since

1
sup il < sup F1 < 5 [ 1f1du

for each R > 0, it follows by property (P2) that J,, — 0 as n — oc. Further,
« RO 5 G oC G
Jim <02 / I+ 1) R? exp(—LnR*) dR < 111, / R*exp(—I,R*) dR.
0 0

The sequence {3,(f)} is therefore bounded. It follows by property (P1b) that
limy, 500 p, = (27) 721y > 0. Hence

n(C™ f)(x) = ay, /fd,u + 0728, (f) = (27) 72 / fdu asn— oco.

By Lemma 2.1, for each Jordan measurable subset F of P and each € > 0 there
exist functions f,, f_ € F such that f_ < xg < f+ in the entire plane,

/f+ diu < u(E) + ¢, /f, dp > p(E) —e.

Obviously, (C" xg)(z) = Néf;) (E) for each positive integer n, and therefore

(O™ F ) (2) < N;Z)(E) < (CM ) (a).

By the above,

lim n(C" f ) (z) = (27r)_210/f+ du,

n—00

lim n(C"™ f ) (x) = (2%)_210/f_ du.

n—o0

As a consequence, all limit points of the sequence {(27)%I;" nN(",) E)} belong to
0 d,x g
the interval

[/ f- dlf/a/f+ d/t} C [WE) — e, u(E) + <.

Since € was arbitrarily chosen, it follows that lim,,_,« nN((iZ)(E) = (27) 2Iyu(E).
Since the set E was arbitrary, the orbit Oy4(x) is uniformly distributed in the plane.
Finally, as noted above, the constant Iy does not depend on the choice of the
coordinate system & (in particular, on the point z), but depends only on the action d.

Below in this section we shall obtain sufficient conditions for an abstract fam-
ily Cgl), R>0,n=0,1,...,of linear bounded operators on the space Ly(S?) to

have properties (P1), (P1b), and (P2). We shall consider the case Cl({l) = pp(Cr),
where {Cr}r>o is a family of bounded operators in the space L,(S') and
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Do, P1,-.. are polynomials with real coefficients. The following properties of the
operators Cr, R > 0, are useful for our aims:

(V1) there exist positive constants I; and Ry such that {|Cg|] < 1 — I} R? for
0 < R < Ry;

(V1') there exist positive constants I;, Ry, and a positive integer m such that
ICw|| <1 =1 R? for 0 < R < Ry;

(V1b) there exist constants Iy > 1, Ry > 0, a measurable function ¢ on S!, and
amap (0,Rg] 3 R+~ hg € Ly(S*) such that I;' < g < Iy on the entire circle,
Ilhr — 1] < IoR and ||Crhr — (1 — gR*)hg|| < IyR? for 0 < R < Ry, and for each
R € (0, Ry) the operator Cr commutes with the operator of multiplication by the
function g;

(V2) ||CRl| < 1 for each R > 0;

(V2') for each Ry > 0 there exists a positive integer M such that [|CM|| < 1 for
0< R<R;.

Let po, p1,p2,... be polynomials satisfying the following conditions:

(W1) there exist positive constants I, I3, and € such that

max(|pn(1 — 2)|, [pa(—1+2)|) < (1 - I32)", 0<2z<s
(W1b) there exist positive constants Iy, I5, Is, and € such that

[Pn(l = 2) — I4(1 — Is2)"| < Is(z + nz?), 0

IN

z L €

(W2) for each zy € (0,1) there exist positive constants I and p such that
|pn(z)| < Ip" for —29 < 2 < 2.

Proposition 2.4. Let {Cr}r-o be a family of bounded self-adjoint operators in
the space L»(S') continuously dependent on the parameter R and let po,pi, ...
be a sequence of polynomials with real coefficients. If the family {Cr}r>o has
properties (V1), (V1b), and (V2) and po,p1,... satisfy conditions (W1), (W1b),
and (W2), then the family of operators ng) = pu(Cr), R>0,n=0,1,..., has
properties (P1), (P1b), and (P2).

Proof. Properties (P1) and (P2) can be established in just the same way as in the
proof of Proposition 2.4 in [5]. It must be noted that one cannot immediately
refer to this proposition in [5] because conditions (V1a) and (W1la) used there are
distinct from conditions (V1b) and (W1b) in the present paper. However, in the
verification of properties (P1) and (P2) one uses only conditions (V1), (V2) and
(W1), (W2).

We now verify property (P1b). We use the same notation as in the statements of
properties (V1), (V1b), (V2) and (W1), (W1b), (W2). Without loss of generality
one can assume that the constant Ry in conditions (V1) and (V1b) is the same, the

constant € in conditions (W1) and (W1b) is the same, and that Rg/ *Ce<land

max ([ R(l)/z, I5 R8/2, IyIs RY) < 1. Moreover, by property (P1) one can assume that
for 0 < R < Ry one has the estimate ||p,(Cr)|| < I7 exp(—IgnR?) for each integer
n > 0, where Iy and Iy are positive constants.

Let R € (0,Rp). Since the operator Cg is self-adjoint and ||Cg|| < 1, the
spectrum of this operator lies in the interior of the interval [—1,1]. It follows by
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the spectral theorem that the Hilbert space Ly(S*) can be decomposed into a direct
sum of subspaces H; and Hy invariant with respect to the operator Cg, and the
spectra of the restrictions of the operator Cr to these subspaces lie in the intervals
[1— R3/? 1] and [~1,1 — R®/?], respectively. Moreover, the spaces H; and Hy, are
invariant with respect to each bounded operator commuting with Cr. In particular,
these spaces are invariant with respect to multiplication by the function g. The
function hg can be represented in the form h; +hp, where hE € H; and hp € Hp.
Moreover, Crhj; — (1 —gR*)h}, € HYy and Crhy — (1—gR*)hy € Hp, which yields

\CrhE — (1 — gR*)hE|| < ||ICrhr — (1 — gR*)hg|| < IR
Further, (Crh}, h%) < (hf, hE) and (Crhj, hy) < (1 — R¥2)(hg, hy), therefore
(Crhr, hr) = (Crhf;, h}) + (Crhy, hy) < (hr hr) — R*/?(hy, hy).
At the same time |(Crhgr, hr) — (1 — gR*)hg, hr)| < IoR?||hg]|, and therefore

(Crhr,hgr) > (1 = IoR?*)(hp, hr) — Lo R*||hll.

Consequently,

IhgI* < Lo RY2||Rp||? + T B2 ||hg]
Since ||hg|l < 1| + ||hr = 1]] < (27)Y? + Iy Ry, we arrive at an estimate of the
form [|hz]| < Iqu/4 where Iy is a positive constant that can be expressed in terms

of Ip and Ry. Finally, ||k, — 1] < ||hr = 1]+ |Ihgll < (IoRY* + I5)RY/*. Obviously,
there exists R; € (0, Ro] such that ||}, — 1|| < [|1]| for 0 < R < R;. Moreover,
h; # 0. In particular, the space HE is non-trivial.

Let R € (0, R;]. We denote by C; the restriction of the operator Cr to the sub-
space Hf;. Weset Dg = 1 —I5(1—C}). Since ||Cg|| < 1 - I, R?, it follows that the
spectrum o of C3; lies in the interval [1—R*/? 11, R?] (where 1-R*/? < 1-I; R?
because I R(l)/ ’ < 1). Then the spectrum of the operator Dg lies in the interval
[1 — IsR32,1 — I, s R?] C [0,1] and, in particular, |Dg|| < 1 — L1 IsR*. We note
that

IDrhf, = (1 = LigR*)hgll = LIICRAR ~ (1 — gR*)hE| < LI R,

Since the operator of multiplication by the function g commutes with Cr and leaves
invariant the space Hg, it commutes with the operator Dg. Hence

IDERS — (1 - LgR) DR~ Wil < LIsRP| D~ Y|

for each positive integer m, and ||D}; ™ '|| = || Dgl|™~! because the operator Dp is
self-adjoint. By the inequality IoIsR? < 1 the function 1 — I;gR? is positive. In
particular,

sup|l — I;gR*| =1 - IsR%infg < 1 — I ' R*.
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Finally, for each positive integer n we obtain

|IDRh) — (1= IsgR*)"hE| < IoIs R32||DR||J Lsup |1 — I;gR*|" ™
Jj=1
n—1 )
< IR (1- LR < LI 'R.
j=0

Further, the operator pn(C;) — 14D}, is self-adjoint on the subspace H}, and
its spectrum is the image of the spectrum a; under the action of the polynomial
pa(z) — (1 — I5(1 — 2))". Since a}; c - R¥21] C [1 — &,1], it follows
from condition (W1b) that the spectrum of pn(C"L) — 14D}, lies in the interval
[—Is(R*2 +nR¥), I(R3/2 + nR®)]. Morcover, ||[p,(CF) — 14D} < Is(R¥/? +nR?),

therefore
Ipn(CYRE — (1 — LgR?)" Wi < LIT' IR + I (R + nR?)||h k],
and ||h}|| < [|hrl] € (27)'/* + IoRy. Thus,
Wpu(CEYRS — 1s(1 = IsgR?)"h|| < Lio(R + nR?),
where I} is a positive constant independent of R and n. Hence

ipn(Cr)1 = Ii(1 — I gR*)"|| € Lio(R+nR*) + (Is + I)||hf, — 1| < I, (RY* +nR?),

where I = max(Iw,ImRS/4 + (I + I7)(IORS/4 + Iy)). Moreover,

1Pn(CR)1 — L(1 = IgR*)™M| < (2m)2(||pn(CR)|| + Iisup |1 — IsgR*[")

Ly exp(—IisnRR?),

VASNV/AN

where I, = (27r)1/2(14 + I7) and I3 = min(lg, Iy ).

For each positive integer n we now define a quantity 7, > 0 by the equality
r, = exp(—nr2). Obviously, r, = 0 as n — oco. If r,, < Ry, then, as follows from
the above estimates,

R
n/ R||pn(CR)1 — I;(1 — IsgR*)™|| dR
0

Tn R,
< n/ I R(RY* +nR3)dR+n/ IsRexp(—IsnR*) dR
0 r

n

4 1 . 1 .
< 5 Inn-r?l“ + - In?rd + 3 112[1_31 exp(—Ilgm'i).
5

Since nr? = —logr,, we conclude that nr?

n — oo. Thus, the sequence of functions

9/4 2.5
— 00, nrn/ — 0, and n?rd — 0 as

Ry
11,/ R(CY1 - I4(1 — LgRY)™)dR,  n=1,2,...,
40

. Bl
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approaches zero in the space Ly(S'). At the same time the sequence of functions

Ry

n | R(l-IgR)"dR = —

- (1 - 1_[3 2n+l~
0 2(""'1)]59( ( gRl) )

n=12,...,

1

approaches (215¢)~! uniformly as n — oc. This means that

Ry
n/ R(C;{l)l, 1)dR — (I4(2Isg) %, 1) asn — oo,

0

where

(I4(2I9)71, 1) = 14/ (2Isg(t)) " dt > I P I > 0.

Sl
The property (P1b) is thus established.

Proposition 2.5. Let {Cr}r>o be a family of contracting operators in L»(S')
continuously dependent on the parameter R. If this family has properties (V1'),
(V1b), and (V2'), then the family of operators C'( - =Ci R>0,n=0,1,...,
has properties (P1), (P1b), and (P2).

Proof. Since the operator C'p is contracting, < 1, for each positive integer m
and cach integer n > 0 we have ||CR|| < ||CE| ”/mJ where [n/m] is the integer part
of the ratio n/m. By property (V1') one can choose m such that ICRI<1-1LR?
for 0 < R € Ry, where I; and Ry are positive constants. Reducing the constant I,
if necessary we can assume that 1 — I; R3 > 1/2. Then for 0 < R < Ry we have the
estimate

||C H 1 _ IIRQ)[n/mj < 2(1 _ IlRQ)n/m < 2(1 . m,_lfle)”_
This proves property (P1).

By property (V2'), for all Ry and R, 0 < R; < Rs, there exists a positive
integer M such that ||C}|] < 1 for Ry < R < Ry. The function R — ||CY||
is continuous because the operator C'g depends continuously on R, and therefore
there exists p € (0, 1) such that ||C} || < p for Ry < R < Ro. Then for each integer
n > 0 we have

ICRI < NCHM < /M=t = = /oy
for R; < R < R,. This proves property (P2).

We shall now use property (V1b). Let I and Ry be constants, let R € (0, Ry],
and let g and hgr be functions mentioned in the definition of this property.
By property (P1), which has already been established for small values of R,
we have the bound ||C3|| < Io(1 — I3R*)", where I, and I3 are positive constants.
Reducing the constant Ry if necessary we can assume that this bound holds for
0 < R < Ry and that RZmax(ly,I3) < 1. Let R € (0, Rg]. Then 0 < 1 — LR? <
exp(—I3R?). Moreover, 0<1—gR?<1—I;'R?> <exp(—I; ' R?) on the entire circle.
Since the operator C'r commutes with the operator of multiplication by the
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function g, it follows that ||Chr — (1 — gR*)Cw ' hg|| < IoR3||CF | for each
positive integer m. Hence for each positive integer n we have

|C1thr — (1 — gR%)"hg|| < 1033 1|Cf U< 101233 - LR?Y < LLI;'R.
3

w1 —(1-— gR*)"|| < bR, where Iy = 21y + 1012[:;1. Moreover,
we have

ICp1 = (1= gR2)" | < @02 (ICRI + sup (1~ gB*)"]) < I exp(~LgnR?),

where Iy = (277)1/2(1'2 + 1) and Is = min(Ig,IO_l). We now define r,, > 0 by the
equality Iyr, = I exp(—Isnr?). Obviously, r, = 0 as n — oco. If r, < Ry, then,
as follows from the above estimates,

Ry

n R||C%1 — (1 — gR*)"||dR

Ry
/ R(CJ1 - (1 - gR*)") dR| <
0

0

Tn Ro
< n/ LR*dR + n/ IsRexp(—IsnR*) dR
0 r

n

I4mn+ Ir - Lexp(—Ignr?).

3 2

Since nr2 = —I5 Nog(I4I5 'ry), it follows that nr? — oo and nry — 0 as n — oo.
Thus, the sequence of functions

Rq
n R(C}#1 — (1 — gR*)")dR, n=1,2...,
0

approaches zero in the space Lo(S'). At the same time, the sequence of functions

Ry

n| R(1-gR)"dR= —0

— (1-(1-gR3"), n=12,...,
0 2(n+1)g( ( g O) ) 3

-1

uniformly converges to the function (2¢)~' as n = oc. Hence

Ro
n R(C}1,1)dR — ((2g) " 1,1) as n — oo,
0
where ((2g)7',1) = / (2¢9(t))"'dt > wI;' > 0. Property (P1b) is now estab-
s!
lished.

§ 3. Actions of groups and semigroups

We require three lemmas proved in [5].
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Lemma 3.1 [5]. A subgroup H of the group R? is dense in R? if and only if there

exists no non-trivial linear functional on R? taking an integer value on each element
of H.

Lemma 3.2 [5]. If an angle @ is not a multiple of ©/2 or ©/3, then the group
generated by the vectors v, = (cosny,sinnp), n =0,1,2,..., is dense in R2.

Lemma 3.3 [5]. Let H be a subgroup of the group G. If the isometries in H have no
common. fized point and do not preserve o common lattice of the form Lo, where Q
s a strip, a square, or a regular triangle, then the group H N Gq is dense in Go.

Let us add two further lemmas concerning properties of subsemigroups of the
group G.

Lemma 3.4. Let H be a semigroup of isometries of the plane P. If H contains at
least one rotation through an angle distinct from zero, but does not contain rotations
through angles incommensurable with w, then the semigroup H is a group.

Proof. One must show that for each isometry A € H the inverse transformation A1
also belongs to the semigroup H. This is obvious if the isometry A has a finite
order. This holds for all axial symmetries and, as follows from the assumptions of
the lemma, for all rotations belonging to H. Further, by assumption, H{ contains a
rotation B through some non-zero angle. This rotation has some (finite) order m,
m > 1. For an arbitrary parallel translation 4 € H the isometry AB is a rotation of
the plane through the same angle as B (but about another point); in particular, AB
is of order m. Hence A~! = B(AB)™~! € 3. Finally, if A € H is a translational
symmetry, then 47 is a parallel translation. As already proved, the semigroup H
contains the isometry (4?)~! and therefore also the isometry (42)~14 = A~1,

Lemma 3.5. Let H be a semigroup generated by isometries
A, . AL €6

If the semigroup H contains no rotations and is not a group, then the isometries
Al,..., Ay satisfy one of conditions (i) and (ii) in Theorem 1.4.

Proof. Let Fy be the Euclidean vector space associated with the affine plane P.
We denote by T, the parallel translation of the plane P by the vector v € Py. We
assume first that each isometry A;, 1 < j <k, has the form T, where v; € Fy. If
the sum of the vectors vy, ..., v is non-zero, then the isometries 4y, ..., Ay satisfy
condition (i) in Theorem 1.4. Otherwise A, A, ... Ay is the identity transformation.
Hence the isometries A4,,..., A; are invertible in the semigroup H. Then each
element of J{ is invertible in H, that is, 3 is a group.

We consider now the case when among the isometries A,..., A} there exist
isometries not belonging to Gy. For definiteness let these isometries be 4, ..., Ag,,
1 < k1 < k. Since the semigroup H does not contain rotations, all these isometries
are axial or translational symmetries with axes parallel to some fixed line [. Let S
be an axial symmetry with respect to [. We consider an arbitrary point = € [.
For 1 < j < k we denote by v; the vector Ajx —x € Fy. Then A; = T,,S for
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1<j< ki and Ay =T, for ky < j < k. The transformation A3A4%... 42 is the
parallel translation by the vector

w = Z (vj + Svj) +2 Z vy,

1<ish ki<j<k

where Sv; is the vector symmetric to v; with respect to the line I. The orthogonal
projection of the vector w/2 onto the direction of the line [ is equal to the projection
of the sum of the vectors vy, ..., vg. Thus, if the vector w is not orthogonal to I, then
the isometries A;,..., Ay satisfy condition (it) in Theorem 1.4. If the vector w is
orthogonal to I, then ST, = T_,,S, and therefore T, A; T,, = A;. As a consecuence,
A A3 AZA343 ... A2 is the identity transformation. Thus, the semigroup H
contains the isometry

A ATPATRAT L UATRAT

Hence H contains the isometries Afl, cey Akfl, which means that H is a group.
We now discuss the degenerate cases (i) and (ii) in Theorem 1.4.

Lemma 3.6. If isometries A1,..., Ay € G satisfy one of conditions (i) and (ii) in
Theorem 1.4, then the action d = FSGy[Ay, ..., Ar] satisfies condition (2) in the
same theorem.

Proof. We prove an auxiliary combinatorial result first. Let ay....,a; be the gen-
erators of the semigroup FSGy,. An arbitrary element g € FSGy, of length n > 0 has
a unique representation of the form aj aj, ---a;,, where 1 < js < k, s =1,...,n.
For each j € {1,...,k} we denote by m(g) the number of elements of the sequence
Jire--.jnequal to j. Let € € (0,k71). We denote by Nf’;), 1 € 7 < k, the ratio of
the number of elements g of length n for which m;(g) < (k™! — &)n to the num-

ber k" of all elements of length n in FSGy and we denote by N the ratio of

the number of elements g € FSGy, of length n for which at least one of the num-
bers my(g),...,mg(g) does not exceed (k~! — ¢)n to k™. Obviously, the quantities
N NE(q';_) are equal, and N{™ < kNE(f’l’). One can readily sce that

D Y G [T
0G< (k= =5)n

, n! . L . . . .
where (;’) = ﬁ is the binomial coefficient. We note that the inequality
' Jtn—j

j < (k7' —€)n leads to the inequality (k — 14 ke)j < (1 — ke)(n — j). This yields
the following inequality for an arbitrary § > 0:

Ts,ri) < il Z

0<i<(k~ 1 —e)n

g kn (e—d(kflJrks) + (k _ 1)66(1_k5))7l,

(n> efé(kvl-i—kf)jed(17k5)(rz—j)(k ._ l)nfj

o Bl
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If 0 is sufficiently small, then e 0*~1+ks) 1 (k — 1)ed(1=k<) js less than k. Thus,
there exists I, > 0 such that the sequence {exp(IEn)NE(ﬁ)} is bounded. Moreover,

the sequence {exp(lgn)ﬁg( ”)} is also bounded.

Let Ay, ..., A be isometries satisfying condition (i). All of them are parallel
translations by some vectors vy,..., v, and the sum v = vy + -+ - + vy is distinct
from zero. We now choose ¢ € (0,k7!) such that 2k%c(|vy| + -+ + |vg|) < |v|.
Let x € P and let E be a bounded subset of . We consider a positive inte-
ger ng such that the distance from the point z to any point in the set E is not
greater than nelv|/(2k). Let g be an arbitrary element of FSGy, of length n > ny.
The isometry d(g) is a parallel translation by the vector wy = mi(g)vi + --- +
mi(g)vg. Assume that mj(g) > (k7' —2)n for 1 < j < k. Since m(g) +
-« +mp(g) = n, it follows that [m;(g) — n/kl < ken, j = 1,... k. Hence
lw, — (n/k)v| < ken(|lvi] + --- + |vk|) < n|v|/(2k). Moreover, |wy| > n|v|/(2Fk).
In particular, d(g)z ¢ E. Thus, d(g)x € E only if at least one of the quantitics

mi(g),...,mg(g) does not exceed (k~' — &)n. Consequently, ’f/?(E) < N for

n > ny and the sequence {exp(lgn)N((i:;)(E)} is bounded.

We assume now that the isometries A, ..., A, satisfy condition (ii). In this
case each of them is either a parallel translation or an axial or a translational sym-
metry with axis parallel to some fixed line [. We consider a point © € P. For
each j, 1 < j < k, let w; be the orthogonal projection of the vector A;z — z to
the direction of the line [. We note that the vectors wy,...,wy do not depend on
our choice of the point x and their sum is distinct from zero by condition (ii).
We set dy = FSGg[By,..., Bi], where By,..., By are the parallel translations
by the vectors wy, ..., wy, respectively. The isometries By,..., By satisfy condi-
tion (i), therefore, as already proved, there exists Iy > 0 such that the sequence
{exp(Ion)N, ;TLO(EO)} is bounded for each bounded subset Ey of P and each point
19 € P. Let z € P and let E be a bounded subset of P. We denote by E; the
orthogonal projection of the set E onto the line ! and by x; the orthogonal projection
of the point z onto /. One can readily see that for each g € FSGy, the point dy (g)z;
is the orthogonal projection of the point d(g)z onto I. Thus, di(g)z; € E; once

d(g)x € E. Hence N((,';) (E) < N (Ey) for n =0,1,.... The set E, is bounded

d].1‘1

because so is E. Consequently, the sequence {exp([on)N(S’f‘)I1 (FE1)} is bounded, and

therefore so is also the sequence {exp(Ign)N((/;) (E)}.

Let Ay,..., A € G. We denote by H the semigroup generated by the isometries
Ap,.. Ap and set C = k Yu[A] + -+ + u[Ak]). Let {Cr}r>o be the family
of radial operators corresponding to the operator C in some Cartesian coordinate
system. The following three lemmas define the conditions under which this family
has properties (V1'), (V1b), and (V2') formulated in §2.

Lemma 3.7. If the isometries Ay, ..., Ay have no common fized point and the
semigroup H contains a rotation through an angle that is not a multiple of 7 /2
or /3, then the family of operators Cr, R > 0, has properties (V1') and (V2').

Proof. Let A € H be a rotation through an angle that is not a multiple of #/2 or
7 /3. Let & be the centre of the rotation A. We claim that the semigroup H contains




178 Ya.B. Vorobets

a rotation B not commuting with A, that is, having another centre. If H contains a
non-trivial parallel translation T, then one can set B = T A. If H contains an axial
symmetry with axis not passing through the point z, then one can set B = SAS.
Hence if the semigroup H does not contain the required rotation, then it consists

of rotations and axial symmetries preserving the point z. However, this contradicts
the assumptions of the lemma.

Let d = FSGi[A,,..., Az]. Since the semigroup H contains rotations A and B,
there exist elements g,g, € FSGy such that d(g;) = A and d(g:) = B. We
set my = |gi| and my = |ga|. Let n be a positive integer not exceeding the
order of the rotation A. The isometries A4, A%,... A"~ ! are non-trivial rota-

tions about the point x, and therefore none of them commutes with B. This
means that the isometries A7BA" ™17 j = 0,1,. — 1, are pairwise distinct.
The elements glg2g] ™7, j = 0,1,...,n — 1, of tho semigroup FSG; have the
same length m = (n — 1)m1 + msy and are distinct because d(glgzg” =y =
AJBA""1=i_ Thus, the operator (kC)™ = 2_lgl=m ld(g)] has the form nD + Y,

where D = n~1 Z”_Ol u[A7BA""1=J] and Y is the sum of k™ — n operators of the
form u[X], X € §. By Lemma 2.2, (kCr)"™ = nDgr+ Yk for each R > 0, where Y} is
the sum of ™ —n unitary operators in L»(S'). Hence 1— |CRIl = nk=™(1—||Dg||).
The rotation B can be represented in the form ToBy, where Ty is a non-trivial
parallel translation and By is a rotation about the point z. Moreover, we have
nD = u[A"~1 By] >0 J u[47TyA~7]. In the Cartesian coordinate system in which
we calculate the radial operators T} is a parallel translation by a non-trivial vector
v € R?. Moreover, the isometry 49ToA~7 is a parallel translation by the vec-
tor 401' where A is the homogeneous part of the rotation A. Then for each

R > 0 the radial operator u[A" "' Bg],'Dg = n~! Py ()lu[4JTgA J]r is the oper-
ator of multiplication by the function h, r = n~! ZJ —0 exp(zR(@ A' )). Since
the operator u[A" "' Bo]g is unitary, it follows that ||Dg|| = sup |hy, rl. Finally,

—[[CZl = nk=™(1 — sup |hn.g|).
We now choose I; > 0 such that [e" — (1+iy —y?/2)| < I |y|® for |y| < 1. Then

sup |hy g — (1 +iRAY — R*A2)| < I |v* R?

for 0 < R < |v]™! and each positive integer n, where

n—1 n—1
1 . ; 1 DL
hd = 2D (@A), B = o= 3 (@, A)
j=0 j=0

We set Iy = inf((®,v)? + (®, 4pv)?). The vectors v and Ayv are non-collinear, and
therefore the inner products (®(t),v) and (®(¢), Ayv) cannot vanish simultaneously.
Since the map ® is continuous, it follows that I, > 0. For each t € S! and each
integer j > 0 we have the equality (®(t), A)v) = (®(t — Jj¥),v), where ¢ is the

angle of the rotation A. This implies that inf((®, 4v)? + (®, 4} v)?) = I, for
J=0,1,.... Thus, if n > 2, then

n—1
. i o (m—=11Iy _ nly
lnf;:o(‘l),‘%v)z 2 — 2 i
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that is, inf B2 > Ip/8. We observe that the ratio of the lengths of the vectors
Up = Z;l;& Alv and v is equal to |1+ + - + el V¥| = |1 — 2| /|1 — €|, s0
that the sequence vy, vs,... contains vectors of an arbitrarily small length. If the
rotation A has finite order, then we set n to be equal to this order, and then v,, = 0.
If the order of A is infinite, then we take some n > 2 such that |v,]| < Ié /2 /4. In
any case sup|h§11)| = n"tu,| < 101/2/4. Further, inf b > Iy/8 because n > 2.
Finally, n does not exceed the order of A, therefore one can find a positive integer m
and a constant I > 0 such that 1 — |{|CE|| > I>(1 — sup |hy gr|) for each R > 0.
Consider arbitrary R € (0,|v|~?). Since sup h{2 < [v|2/2, the function 1 — R
is positive. Moreover,

o oy . . . Iy R?
sup |l — R2AP)2 <sup |1 — R?RP| =1 - R? inf h{? <1 - OT .
Since the functions hg) and hgf) are real-valued, it follows that
: (1) 27(2)12 21(2))2 2 (1))2 IOR2
sup |1+ iRAhY) — R*h7))? =sup |l — R°h7|* + Rosup by ’[" < 1~ T
and therefore sup |1 + iRhY — R2h$Y| < 1 — IyR?/32. Finally,
-1 (1) 21(2) 3p3 IOR2 33
sup |hn.r| <sup|l +iRAY,) — R*R |+ L|v|°R° <1~ 3 + L|v]"R°.

Hence the estimate sup |h, r| < 1— IoR?/64 holds for sufficiently small values of R:
moreover, ||[C#| < 1 — IoI,R*/64. This proves property (V1').

We now consider arbitrary R, > 0. The vectors Agv — v and Ag(Apv — v) are
non-collinear, therefore each linear functional on R? taking integer values at these
vectors is an integer linear combination of the functionals Iy and /; defined by the
relations lg(Agv —v) = 11 (Ao(Aov —v)) = 1 and lo(Ao(Aov —v)) = l1 (Agv ~v) = 0.
Only finitely many functionals of this kind have norms not exceeding (27) ' R;.
Since A is a rotation through an angle that is not a multiple of 7/2 or /3, it
follows from Lemma 3.2 that the vectors Aé“v — Aév = AS(AOD —v),j=0,1,...,
generate a subgroup of the group R? that is dense in R*. It now follows from
Lemma 3.1 that an arbitrary non-trivial linear functional on the space R* takes
a non-integer value at some vector Aé“v - Aév, j = 0. Thus, there exists a
positive integer n such that each non-trivial linear functional on R* of norm not
exceeding (27)"!R; takes a non-integer value at least at one of the n — 1 vectors
Aé“v—/—lév, j=0,1,...,n—2. If A has finite order ng, then one can choose n to be
not greater than ng + 1 because in this case ATy — APy = AJ" v — 4w for
each integer j, j > 0. Moreover, one can choose n to be not greater than no because
the sum of the vectors Af)“z} — A}v, j =0,1,...,n9 — 1, vanishes. Furthermore,
as shown above, one can find a positive integer M and a constant I3 > 0 such that
the inequality 1 — ||CM || > I3(1 — sup |hn,g|) holds for each R > 0. If |h, g(t)| = 1
for some t € S', then the quantities exp(iR(®(t), 4jv)), 7 = 0,1,...,n — 1, are
all equal and the numbers (27r)_1R(<I>(t),Aé+1v — Aév), j = 01,....n — 2,
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are integers. The map w — (27) 'R(®(t),w) is a non-trivial linear functional
on R? of norm (27)~'R. Thus, for 0 < R < R; we have |hn.r| < 1 on the entire
circle. Since the function hy, g is continuous, sup |h, g| < 1 for 0 < R < R;. Hence
ICHl < 1for 0 < R < Ry. Since our choice of R, can be arbitrary, the family of
operators {Cr}r>o has property (V2').

Lemma 3.8. If the isometries A1, ..., Ay have no common fized point and do not
preserve a common lattice of the form LQ, where Q) is a strip, a square, or a reqular

triangle, and if the semigroup H is a group, then the family of operators Cr, R > 0,
has properties (V1') and (V2').

Proof. Let d = FSGy[Ay,..., Ag]. Since the semigroup H is a group, there exists
an element gy € FSGy of positive length mg such that d(gg) is the identity trans-
formation.

The Cartesian coordinate system used for the calculation of the radial opera-
tors Cr, R > 0, enables one to regard an arbitrary element of the group Gy as a
parallel translation by some vector v € R?; we denote this element by T,. We set
Hy ={v e R? | T, € H} and denote by H; the sct of vectors v € R? such that each
of the parallel translations T, and T, can be represented in the form d(g), where ¢
is an element of the semigroup FSGy, of length |g| divisible by mg. The set Hy is a
subgroup of R? because H is a group. The set H; is also a subgroup of R?, which
immediately follows from its definition. By Lemma 3.3, the group H N G is dense
in Go, therefore the group Hy is dense in R?. The group H, is also dense in R?
because it contains the group moHy = {mov | v € Hp}.

Let vy,...,v, € Hy be vectors such that the family vy, —vy, ..., v,, —v,, contains
no equal vectors. According to the definition of the set H;, one can find elements
gt 97,95, g7 of the semigroup FSGy such that d(gj) =T, d(g;) =T_,,,

J =1,...,n, and the lengths of these elements are divisible by mg. Since d(gfg) =
d(g) for each ge FSGk and each positive integer p, where |gfg| = pmo + |g], the
elements ¢ JL 9155979, can be chosen having the same length m > 0. More-
over, the selected elements are all distinct because so are the parallel translations
T, T—vyy. ., T, T, . Hence the operator
(kC)™ = > uld(g)]
lgl=m

has the form 2nD +Y', where D = (2n) ' (u[T}, |+ u[T_o, ]+ -+ u[Te, | + u[T-,,])
and Y is the sum of £ — 2n operators of the form u[A], A € §. By Lemma 2.2,
(kCr)™ = 2nDg + YR for each R > 0, where Yy is the sum of k¥ — 2n unitary
operators in Ly(S'). As a consequence, 1 — ||C%|| > 2nk~™(1 — ||Dgl|). It now
follows from Lemma 2.2 that Dpg is the operator of multiplication by the function
hr =n""3""_ | cos(R(®, v;)). Moreover, || Dg|| = sup |hg|.

Since the group H; is dense in R?, it contains a pair of non-collinear vectors v;
and vy. Here the vectors vy, —vi,v2, —vs are pairwise distinct and by the above
there exist a positive integer m and 11 > 0 such that ||CF|| < 1—I,(1 - sup|hg|)
for each R > 0, where hg = (cos(R(®,v1)) + cos(R(® 112)))/2 We now choose
a constant Rg > 0 such that Ro|v| < 7/2 and Rojvs] < #/2. For 0 < R < Ry
we have 0 < hgp < 1 — 1R?((®,v1)? + (®,12)?) on the entire circle S!.

« B
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Then 1 — sup |hg| > IoR?/4, where Iy = inf((®,v1)? + (®,v2)?). Since the
vectors v; and vy are non-collinear, the inner products (®(t),v1) and (®(¢),v2)
cannot simultaneously vanish. As a consequence, the constant I is positive. More-
over, the family {Cr}r>o has property (V1').

We consider now arbitrary R; > 0. Each linear functional on R? taking integer
values at the vectors v; and v, is an integer linear combination of the functionals [
and I» defined by the relations I1(v1) = ls(v2) = 1 and l;1(v2) = l2(vy) = 0. Only
finitely many such functionals have norm not exceeding 7' R;. It follows from
Lemma 3.1 that an arbitrary non-trivial linear functional on the space R? takes a
non-integer value at some vector v € Hy. Thus, there exist vectors vs,...,v, € H;
such that each non-trivial linear functional on R? of norm not exceeding 7 ~'R;
takes a non-integer value at least at one of the vectors vy,...,v,. These vec-
tors can be chosen so that the family v, —vy,...,v,, —v, contains no equal
vectors. As follows from the above, there exists a positive integer M and a con-
stant I, > 0 such that 1 — ||CM|| > L(1 - sup [hg|) for each R > 0, where
hg = n! Yoiey cos(R(®,vy)). If \hr(t)] = 1 for some t € S', then the num-
bers n ' R(®(t),v1),..., 7 ' R(®(t),v,) are integers. The map v — 7~ R(®(t),v)
is a non-trivial linear functional of norm #~'R. Thus, for 0 < R < R, we have
|l~zR| < 1 on the entire circle. Since the function hg is continuous, it follows that
sup [hg| < 1for 0 < R < Ry. Hence [[CM|| < 1for 0 < R < Ry. Since R, can be
arbitrary, the family of operators {Cr}r>o has property (V2').

Lemma 3.9. If the isometries A1, ..., A do not satisfy conditions (1) and (ii) of
Theorem 1.4 and the family of operators Cr, R > 0, has property (V1'), then this
family has property (V1b).

Proof. By property (V1'), there exist positive constants [; and Ry and a positive
integer m such that ||C#| < 1 - L R? for 0 < R < Ry.

The Cartesian coordinate system in which we calculated the radial operators Cg,
R > 0, enables one to regard an arbitrary isometry in G as a transformation of R?.
Each isometry A;, 1 < j < k, can be represented in the form 4; = B; T}, where B;
is an isometry preserving the origin and T; is a parallel translation by some vector
v; € R?. The map b; = @' B;® is a well-defined transformation of the circle S! of
the form t — t+por t = @—t, where p € S'. We denote by U; the unitary operator
in the space L2(S') acting by the rule h — hob;. By Lemma 2.2, u[Bjlgr = U;
for each R > 0, and the radial operator u[T;]r is the operator of multiplication by
the function ef(®%). Hence Crh = k! Zle eR(® ) h for each R > 0 and
each function i € L2(S'). We now define the operators Dy, Dy, and Dy on the
space Lo(S') by the formulae Doh = k! Zle Ujh, Dih =k} Zle(q),vj)Ujh,
and Dyh = —(2k)7! Z;":l(q),vj)zUjh, h € Ls(S'). Obviously, there exists a
constant I, > 0 such that ||Cr — (Do +iRD; + R*D»)|| < LR? for 0 < R < Ry.

Let Hy, H,, and H.j be the following real linear subspaces of the space Lg(Sl),
The first space is spanned by the functions ¢ — cost and ¢t — sint, the second by
the functions ¢ — cos2t and ¢t — sin2t, and the third by the function 1 and the
space Hy. One can readily see that the spaces Hy, Hs, and H.j are invariant with
respect to the operator Dg. An arbitrary non-trivial function f € H; attains its
maximum at a unique point ¢ty € S'. For each integer j, 1 < j < k, the relation
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U;f = f holds if and only if b;(t9) = to. The equality Dof = f holds if and only
if t is a common fixed point of the maps by, ..., bx. Further, a non-trivial function
f € H, takes its maximum at two points ¢;,%2 € S, and the distance between t;
and ¢y is . Moreover, the equality U;f = f, 1 < j < k, holds if and only if the
map b; takes the set {t1,t2} to itself. The equality Dof = f holds if and only if
the set {t1,¢>} is invariant with respect to each of the maps by,...,b;. Thus, if the
restriction of the operator 1— Dq to one of the spaces H; and H; is degenerate, then
each of the maps by, ..., by either has a fixed point or transposes two points lying
at distance 7 from each other. In either case the maps b1,...,b; are involutive.
Hence the operators Uy, ..., U are self-adjoint, and so is also the operator Dy.

Obviously, D11 = k~Y(®,vy + -+ + v) € H;. We claim that there exists a
function fi € H, such that (1 — Do) fi = D11. This is clear in the case when the
restriction of the operator 1 — Dy to the space H; is non-degenerate. Otherwise
the maps by, ..., b have a common fixed point ¢y € S! and each of the isometries
By, ..., By is either the identity map or an axial symmetry with axis ! passing
through the origin and the point ®(tg). We assume first that By, ..., By are the
identity transformations. If the sum of vectors vy, ..., vy is distinct from zero, then
the isometries Ay, ..., Ag satisfy condition (i) in Theorem 1.4. If this sum is equal
to zero, then D1 = 0, and one can set f; = 0. We now proceed to the case when
at least one of the isometries By,..., By is an axial symmetry. For an arbitrary
point x € R? the orthogonal projection of the vector A2 —z, 1 < j < k, onto the
line 1 is equal to the projection of the vector v;. Thus, if the sum of the vectors
vy, ...,V is not orthogonal to [, then the isometries Ay, ..., A satisfy condition (ii)
in Theorem 1.4. If this sum is orthogonal to [, that is, if (D11)(¢y) = 0, then
Do(D11) = k7Y (k — 2k;) D11, where k; is the number of axial symmetries among
the isometries By, ..., By, and we can set f; = k(2k;) 'D;1.

Clearly, D21 € HY and DyH, C Hj, therefore the function hg = D51 — Dy f
belongs to the space H; . We denote by D the restriction of the operator 1 — Dy to
this space. Let Hy (ﬁg) be the kernel (respectively, the range) of the operator D.
One can readily see that 1 € ﬁg and INDHQ = ﬁg. If the restriction of the operator
1— Dy to the space H» is non-degenerate, then I;TZ = H>, and the space ﬁo consists
of constant functions. If this restriction is degenerate, then, as shown above, the
operator Dy is self-adjoint, and therefore the spaces Hy and H, are orthogonal. In
cither case the space 1'12+ decomposes into the direct sum of its subspaces I;TO and f]g.
Hence there exist functions g € H, and f2 € Hj for which (1 — Dg)f2 — g = ho.
Moreover, Dyg = g.

For each R > 0 we set hy = 1+ iRf + R?f>. Obviously, there exists a constant
I > 0 such that ||hg — 1|] < 3R and ||hg|| < I3 for 0 < R < Ry. It follows from
the relations (1 — Dg)1 =0, (1 — Do) f1 = Di1,and (1 — Dy)fo —g = D21 - D1 fi
that

(Do +iRD, + R*D3)hg — (1 — gR*)hg|| < ILR?

for 0 < R < Ry, where [, is a positive constant. Hence
ICrhr — (1 = gR*)hg|| < (oI5 + 1) R?

fOI‘0<R<R0.
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Arbitrary functions h, h € Lo (S") satisfy the identity
1R+ BI® + |Ih = RII” = 2/[A]J* + 21[A]>.

Thus, if [|Al] = ||k|| and ||h+A|| = ||A]|+ |||, then h = h. This leads to the following
conclusion: for each h € Ly(S") the norms of || Doh|| and ||h|| are equal if and only
if the functions Uy h,...,Ugh coincide. Hence the equality Doh = h is equivalent
to the condition that U;h = h for j = 1,..., k. Thus, in our case the function g is
invariant with respect to the operators Uy, ..., U,. This means that the operator
of multiplication by the function g commutes with the operators Uy, ..., Uy, which,
in turn, shows that multiplication by g commutes with all operators Cgr, R > 0.
Moreover, the function g is continuous and real-valued because g € Hj .

To complete the proof it remains to show that the function g is everywhere
positive. Obviously, |[Cg|| < 1 for each R > 0. Since the operator of multiplication
by the function g commutes with the operator Cg, it follows that

ICRhr — (1 — gR*)C}E "hi|| < (Ils + I4)R®,
for 0 < R < Ry and each positive integer n, which yields
ICEhr — (1 - gR*)"hg|| < IsR?,

where I5 = m(1+ R§ sup |g|)™ "1 (I13 + I,). Consider arbitrary e > 0. We set E. =
{t € S'| g(t) < I —¢}. Let x. be the function on S! that is the characteristic func-
tion of the set E.. For R € (0, Ro] we have ||x.Cphg — (1 — gR?)"y.hg|| < I, R3.
Since the function g is invariant with respect to the operators Uy, ..., Uy, so also
is x-. Hence the operator Cz commutes with the operator of multiplication by xe.
In particular, x.Cghr = CF (x-hg). Then ||x.Cihg|| < (1—1, R?)||x-hg||. More-
over,

I(1 = gB*)x:hgll = (1 = (I, = £)R?)|[x-hal|
because 1 — gR? > 1 — (I; — €)R? on the set E.. This yields

eR*|Ix-hrll < |(1— gR?)x-hrll - Ix-Cihrll < I R5.

Hence [[x:|| < lIxzhrll + ||hr = 1| < (¢7'Is + )R for 0 < R < Ry, which means
that x. = 0 almost everywhere on S! and the set F. is empty because it is open.
Since € could be chosen arbitrarily small, it follows that inf g>1 >0.

For a € (0,1) we define a sequence pg ,, P1,a, ... of polynomials by the recurrence

relations po.q(z) = 1, p1.o(2) = 2, and p,y; .4 (2) = (14 a)zpna(2) — app_1.4(2) for
n>1.

Lemma 3.10. The polynomials py ,pi.a,- .. satisfy conditions (W1), (W1b), (W2)
formulated in § 2.

Proof. By [5], Lemma 3.6 the family of polynomials Pna, n = 1,2,..., satisfies
conditions (W1) and (W2). The addition of the polynomial Po,q to this family does
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Lot violate these conditions. We verify condition (W1b). Let 2, = 2a'2(1 +a)*.
For z € (zq4,1] and each integer n > 0 we set

gn(z) = K1 (2)AT(2) + Ky (2) A5 (2),
where

1/2
M(2) = (1+a)% + ((1+a)2§ —a) ,

A AZZ 1/2
)\g(z)=(1+a)§— ((1‘{"(1)2—41——(1) R
_ Z—/\z(z) (2) = )\1(2)—2
Ki(2) = M (z) — Aa(z)’ K>(z) = M(z) = Aa(2)

Moreover, gn(z) = pn,a(z). In fact, the conditions qo(z) = 1 and qi(2) = z are
ensured by our choice of the functions K and K>, and the recurrence relations
Gns1(z) = (1 +a)zgn(2) — agn-1(2) follow from the fact that A;(z) and Ay (z) are

the roots of the equation A* = (1 +a)zA — a.
The functions Ai, A2, K, and K, are infinitely differentiable on the interval

(24,1]. Direct calculation shows that M) =1, A1) = (1+a)/0- a) > 0,
A1) = a, K1(1) = 1, and K,(1) = 0. Hence there exist constants I, > 0 and
e € (0,1 — z,) such that

0<h(l-2)<M(l-2<1, 0<1-X(1z<],
IM(1—2) -1+ M (1)z] < I2°,
|K1(1—Z)—1I<I1Z, |K2(1—z)l<11z,

for 0 < z < e. Then for each integer n > 0 one has the estimate

Ky — 1]+ Kol

|pn,a - /\?1 g

on [1—¢,1]. Moreover, |A} (1—z)— (1 =X} (1)2)"] < nA (1=2) =14+ X (1)2| < Iin2?
for 0 < z < &. Thus, |pro(l —2) —(1— AN (D)2)" € 2Lz + Iinz? for 0 < z < €.
This demonstrates condition (W1b).

Proof of Theorem 1.4. Let Ay, ..., Ay be isometries of the plane P having no com-
mon fixed point and preserving no common lattice of the form Lg, where @ is a
strip, a square, or a regular triangle. We denote by 3 the semigroup generated
by the isometries Ay, ..., Ay and set €' = k= (u[Ay) + -+ + u[Ag]). We intro-
duce a Cartesian coordinate system ¢ in the plane P. Let {Cgr}r>o be the family
of radial operators corresponding to the operator C in the coordinate system &.
If the isometries A, ..., Ay satisfy one of conditions (i) and (i) in Theorem 1.4,
then by Lemma 3.6, the action FSGg[A1, ... , Ay] satisfies condition (2) in the same
theorem. Otherwise it follows from Lemmas 3.4 and 3.5 that the semigroup H
either contains a rotation through an angle incommensurable with 7 or is a group.
Then by Lemmas 3.7 and 3.8 the operator family {Cr}r>o has properties (V1)
and (V2'). By Lemma 3.9 this family has property (V1b). Further, it follows
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from Lemma 2.2 that the operator Cg depends continuously on the parameter R.
Moreover, ||Crl| < 1 because Cf is the arithmetic mean of several unitary oper-
ators. Thus, the family {Cr}r>o satisfies the assumptions of Proposition 2.5. In
accordance with this proposition the family of operators Ch R>0,n=0,1,...,
has properties (P1), (P1b), and (P2). We observe that the operators C%, R > 0,
are radial operators corresponding to the operator C" in the coordinate system ¢&.
In their turn, the operators 1,C,C?,... are averaging operators assigned to the
action of FSGg[A4;,..., Ax]. By Proposition 2.3 this action satisfies condition (1)
of Theorem 1.4. This completes the proof of Theorem 1.4.

Proof of Theorem 1.3. For arbitrary isometries A4;,..., Ay the transformations 4,,
ATt L0, Ak, ADY satisfy neither of conditions (i) and (ii) in Theorem 1.4. Thus,
the assertion of Theorem 1.3 in its part relating to actions of the form

FSGor[A1, A7Y, . A, ALY

is a consequence of Theorem 1.4. Consider now the action d = GlAL, ..., 4],
where G = FGy or (under the assumption that A,, ..., A4, are involutions)
G = Z3*. We set a = (2k — 1)~ if we consider the action of the group FGy,
and a = (k — 1)7" if we consider the action of Z3*. We note that k > 2, and if
Ay, ..., Ay are involutions, then k& > 3 because otherwise the isometries Ay, oo A
have a common fixed point or preserve a lattice generated by a strip. In partic-
ular, 0 < a < 1. Averaging operators assigned to the action d have the form
C = p,o(D), where D = (2k)" (u[A;] + u[AT] + - + ulAg] + w41 (f
Ar,..., Ay are involutions, then D = C = k™ Y(u[A;] + -+ + u[4;])). In fact,
the equalities C®© = 1 and CY) = D are obvious, and the recurrence relations
CHtD = (14 a)DC™ — aC" 1 n = 1,2,..., can be readily verified (cf. the
proof of Theorems 1.1 and 1.2 in [5]). By Lemma 2.2, ng) = pn.o(Dpg) for each
R >0 and each integer n > 0. The isometries A, Al_l, ey Ag, A;l satisfy neither
of the conditions (i) and (ii) of Theorem 1.4, and, of course, the semigroup
of isometries generated by these isometries is a group. Then it follows from Lem-
mas 3.8 and 3.9 that the operator family {Dr}p>o has properties (V1'), (V1b),
and (V2'). The operator Dg depends continuously on the parameter R and is
self-adjoint since Dp = (Cr + C},)/2. Moreover, || D}|| = ||Dg||™ for each positive
integer n. Hence for the family {Dg}r>o property (V1) is equivalent to (V1), and
property (V2') to (V2). Thus, the family {Dg}pg~o satisfies all the assumptions
of Proposition 2.4. The polynomials py q,p1.q,... have real coefficients and satisfy
conditions (W1), (W1b), and (W2) by Lemma 3.10. By Proposition 2.4 the family
of radial operators Cg”, R >0,n=0,1,..., has properties (P1), (P1b), and (P2).
Using Proposition 2.3 we complete the proof of Theorem 1.3.
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