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Ergodicity of billiards in polygons

Ya. B. Vorobets

Abstract. In the space of all polygons, a topologically massive subset consisting
of polygons with ergodic billiard flows is explicitly described. The elements of this
set have a specified order of approximation by rational polygons.

As intermediate results, constructive versions of the ergodic theorem for the bil-
liard in a rational polygon and for the geodesic flow on a surface with flat structure,
and also a constructive quadratic estimate for the growth of the number of saddle
connections (singular trajectories) in a flat structure, are proved.

Bibliography: 6 titles.

1. Introduction

The billiard in a plane domain Q) with piecewise smooth boundary is the dynam-
ical system describing the frictionless motion in @ of a point-like ball rebounding
at the boundary of @ by the law ‘the angle of incidence is equal to the angle of
reflection’. Usually, one considers the billiard flow on the level set of energy corre-
sponding to the motion with unit velocity, so that one can set the phase space of
the flow to be @ x S! (here S? is the circle of unit velocities) with identification
of elements (z,v;) and (z,vs) such that z is a boundary point of Q and v; and vs
are vectors symmetric with respect to the tangent line to 8Q at z. The billiard
preserves the natural measure y x A (where p and A are Lebesgue measures on Q
and S!, respectively) on the phase space.

Definition 1.1. We say that the billiard in a domain Q is ergodic if each measur-
able subset of the phase space that is invariant with respect to the billiard flow is
either of measure zero or of full measure.

The subject of the present paper is the billiard flows in polygonal domains of
general form. The reflection condition for a billiard looks particularly simple in
such domains, however, billiards in polygons are, with a few exceptions, dynamical
systems with singularities due to the presence of corners. The study of the ergodic
properties of the flow turns out to be a complicated problem for that reason. The
only general results in this case are those obtained for the billiards in so-called
rational polygons.

For each polygon Q we denote by G(Q) the group of orthogonal operators gen-
erated by the linear parts of the symmetries with respect to the sides of Q.

AMS 1991 Mathematics Subject Classification. Primary 58F11, 58F17.




390 Ya. B. Vorobets

Definition 1.2. We say that a polygon @ is rational if G(Q) is a finite group.
An equivalent condition requires that the angle between any two sides of the poly-
gon (not necessarily adjacent or lying in the same component of the boundary) is
(rationally) commensurable with 7.

The phase space of the billiard in a rational polygon @ is foliated by invariant
surfaces Q x G(Q)v, v € S* (see [1]). As shown by Kerckhoff, Masur, and Smillie [2],
the restriction of the billiard flow to almost each of these surfaces is strictly ergodic,

* that is, it has a unique invariant normalized Borel measure (see Theorem 3.3 below).

In particular, the above surfaces are ergodic components of the flow. We note that
the larger the number of elements of G(Q) the more uniform is the distribution
of the surfaces @ x G(Q)v in the phase space and the closer is the billiard in @
to ergodicity. Proceeding from this observation and using approximation methods,
it can be shown (see [2] and [3]) that there exists a massive (second-category)
subset of the space of all polygons (and also of some its subspaces) formed by
polygons with ergodic billiards. Namely, this is the subset of the polygons that can
be sufficiently well approximated by rational ones. The arguments in [2] and [3]
provide no information on how good this approximation must be.

In the present paper we construct a set with the same properties explicitly;
namely, we indicate an order of approximation of a polygon by rational polygons
ensuring the ergodicity of the billiard flow in it (Theorem 1.1).

Definition 1.3. Let 6(/V) be a positive function of a positive integer variable that
decreases to zero as N — co. We say that a polygon @ admits an approzimation by
rational polygons at the rate §(N) if there exist arbitrarily large numbers N such
that the angles oy, @, ..., ay between the adjacent sides of () can be approximated

with precision §(IN) by angles of the form W%, where n is an integer and the

n ‘.
fractions 2 _k corresponding to distinct angles cannot be cancelled by

m n
N NN
the same integer.
Theorem 1.1. Let Q be a polygon admitting an approzimation by rational polygons
at the rate

-1
2N
§(N) = (222 ) .
Then the billiard flow in Q is ergodic.

The polygons satisfying the condition described in this theorem form a massive
subset of the space of all polygons. A simple example of such a polygon is a right
triangle with acute angle 7 (a5 ' +ayy + - +ag, +---), where {a,} is a sequence
defined by the relations ag = 1 and @, = 2% forn=0,1,2,....

The scheme of the proof of Theorem 1.1 is as follows: first we carry out con-
structive estimates relating to the approximation of polygons and billiard flows in
them (Proposition 2.3); this is the easier part of the proof, which we tackle in § 2.
Then we prove a constructive version of the ergodic theorem for the billiard flow
in a rational polygon (Theorem 3.1); this is the contents of §3. Theorem 3.1 can
be reduced to a similar result for the geodesic flow on a surface with flat structure
(Theorem 3.2). It turns out that the proof of Theorem 3.2 requires a construc-
tive version of a theorem of Masur [4] on the quadratic growth of the number of
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saddle connections (singular trajectories) in a flat structure, and this estimate is
established in §4. We present the proof of Theorem 1.1 proper at the end of §2.

Since there is little hope that the arguments in [2] and, in particular, the methods
of the Teichmiiller theory used there, can be made more constructive, we mostly
use in this paper the ideas of Boshernitzan [5] and Masur [4].

The idea of finding concrete examples of polygons with ergodic billiard flows
by overcoming the non-constructivity stemming from the use of the Teichmiiller
theory in the arguments of Kerckhoff, Masur, and Smillie is due to A. M. Stépin.
The author is indebted to him for setting the problem and constant help in the
research.

The results of this paper were announced in [6].

2. Approximation by rational polygons

In this section, we carry out quantitative estimates related to the approximation
of polygons and billiard flows in them. After this we prove our central theorem
formulated in §1. Its proof is based on the ergodic properties of the billiards in
rational polygons (Theorem 3.1) that we establish in § 3.

Definition 2.1. We call a polygon é a d-perturbation of a polygon @ if there exists
a homeomorphism ¢: @ — C} establishing a one-to-one correspondence between
the vertices of the two polygons such that the distances between the corresponding
vertices are at most 4.

We denote by d(Q) the smallest non-zero distance between the vertices, sides,
and diagonals of Q. If Q is a d-perturbation of @, then, clearly, Id(@) —-d(Q)| £ 26.
Let k(Q) be the number of sides of Q and let D(Q) be its diameter.

The following result justifies the term ‘approximation by rational polygons’ intro-
duced earlier.

Lemma 2.1. Assume that the angles between the sides of a polygon Q can for some
N > 0 be approzimated with precision § by angles of the form W% with integer n.

Q)
2k(Q)D(Q)

the angles between its sides are precisely of the form ﬂ]—v- with integer n.

If 6 < , then there exists a k(Q)D(Q)d-perturbation Q of Q such that

Proof. Assume that the boundary of Q consists of I components and let A;;, A;o,
., Air, be the consecutive vertices of its ith component (1 < i < [). We now
choose points ]fij, 1 <o <1, 1 <5 < k;, with the following requirements in mind:

(1) Zil = A;;; moreover, ;{12 = Aqq;

(2) the angle between the segments /ngig and ZUZU, and also the angles
between ﬁi,j_lgij and gijgi,jﬂ (1 < j < k;) are of the form s with
integer n, and their differences from the angles between A;; A;» and 411419
or between A; ;_1A;; and A;;A; 11, respectively, are at most §;

(3) the lengths of the segments Z,-J—/L,jﬂ and A;;A; j4+1 are the same.

By construction, the distance between A,; and A;; is not larger than
(J —1)D(Q)s < k(Q)D(Q)4. Since k(Q)D(Q)S < 3 d(Q), the k(Q) line segments
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ﬁil /Lg, .. ,Zi,ki_lﬁiki,likiﬁil (1 € i < 1) are pairwise disjoint, therefore they are
the sides of some polygon Q. This polygon is the required one.

Lemma 2.2. Let K > 0 be an integer such that the polygon Q has angles not
smaller than n/K. Then the sum of the lengths of K consecutive segments of an
arbitrary billiard trajectory in Q is at least d(Q).

Proof. First we consider the billiard in a sector of angle a. We use the construction
of straightening a billiard trajectory: as the trajectory reaches a side of the sector
we reflect the sector with respect to this side and extend the trajectory into the
reflected sector. As a result we obtain a linear trajectory passing successively
through several copies of the original sector. This construction immediately shows
that a billiard trajectory in a sector can have K finite segments only if Ka < .
Hence K consecutive segments of a billiard trajectory in the polygon () cannot all
have end-points on the sides of the same corner in this polygon and there exists
either a segment with edges on some sides of () with no common vertex or three
consecutive vertices 4, B, and C of the trajectory lying on three distinct sides a, b,
and c of the polygon. In the first case the length of the corresponding segment is at
least d(Q). In the second case the sum of the lengths of AB and BC' is not smaller
than the distance between a and the segment ¢ symmetric with c¢ relative to the
side b. It is easy to see that this distance is at least d(Q).

Let @ be a polygon cut into triangles by diagonals in an arbitrary manner. We
consider a polygon é that is a d-perturbation of Q. Assume that for each two
vertices of () that can be joined by a diagonal (lying inside @)) the corresponding
vertices of (j) can also be joined by a diagonal (at any rate, this holds for < % d(@)).
Then there exists a partitioning of @ into triangles corresponding to the above
partitioning of Q). Let ¢ be the homeomorphism of ) onto Cj that is affine on each
triangle in the triangulation of @ and maps it onto the corresponding triangle of (5
Clearly, the distance between z and () is at most & for each x € ).

Let {T§} and {Té} be the billiard flows in Q and Q, respectively. For each

t > 0 we define the functions z;, v¢, Z¢, and 7; on @ x S! by the following formulae:
(zi(x,v),ve(z,v)) = Té(:r,v) and (Z¢(z,v), v (z,v)) = Tc%(go(:v),v) for each (z,v)
in Q x S'.
Proposition 2.3. For each t > 0 there exists a set B C Q x S! dependent on the
polygons Q, Q, the map ¢ and t, and of measure at most C3(C1t + Cy)38 such that
for each (z,v) € Q x S outside B and for each 7, 0 < 7 < t, at least one of the
following two possibilities holds:

(1) the distance between z:(z,v) and =1 (Z;(x,v)) is at most C4(Cit + C2)*s
and the angle between the directions of vi(z,v) and U (x,v) is at most
Cs(Crt + C2)6;

(2) the points z4(z,v) and T,(x,v) lie at a distance at most Cs(Cit + C2)?8
from the boundaries of QQ and @, respectively.

Here C,,C5,C3,C4,Cs, and Cq are positive constants dependent on Q.
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Proof. We index the sides of () and é by the numbers 1,2,... k(Q) ina coord\ina,ted
manner. Let a; be the angle between their sides with index i. Since Q and @ are
d-perturbations of each other, it follows that sina; < 28/l;, where [; is the length
of the ith side of Q. Hence a; < 7/2-24/1; < 76/d(Q).

Let 41,42,...,i, be an arbitrary sequence of indices, 1 < 7; < k(Q) Let Q1 be
the polygon symmetric to @ with respect to the i;th side, let Q» be the polygon
symmetric to (J1 with respect to the isth side (the indexing of the sides of Q; is
carried over from ()), and so on. In a similar r way, starting from Q we construct the
sequence of reflected polygons Ql,Qg, .. Qn We also set Qg = ) and Qo = Q.
Let R; and R; be the reflections of Q and Q, respectively, with respect to their ith
sides. Then the plane motion taking ¢ to @; (with the 1ndex1ng of sides taken into
account) is obviously R;, R;, --- R;;. In the same way the map R“R R i; takes
Q into Q]

In what follows, for an arbitrary pair of polygons ' and Q" that are isometric
images of ) and @, we denote the largest angle between the corresponding sides
of Q" and Q" by B(Q',Q"), and the largest distance between the corresponding
vertices of these polygons by p(Q', Q").

We shall now prove by induction on j that

D@
d(Q) d(Q)

for 0 < j < n. For j = 0 these estimates are consequences of those already
obtained. Now assume that we have proved this assertion for some value of j,

0 <7 <n. Let Q and @}, be the images of Q) under the isometries R;, R - Ry,

and I?,1 R,2 -+ Ry, , respectively, and let Q]+1 be the polygon symmetric w1th Q;
relative to the 31de with index 7;4;. Then

B(Q;,Q;) <45 +1) and p(Q;,Q;) < (j+1)%

p(Q5,Q5) = p(Q41, Qi) = p(Q,Q) < 6

B@505) = B@Qer, Qi) = B@Q, Q) <7 —

d@Q)

Let p' be the vertex of Q4 that is the end—point of the 7;;1th side and let p"
and p be the corresponding vertices of @, and Q;;1. Then the polygon Qi
can be obtained from @}, by means of the translation that takes p' into p and
a subsequent rotation with centre at p’. The points p’ and p” are at a distance
not greater than ¢ from the corresponding vertices of Qﬁl and @], therefore the
distance between them is at most 2. The angle of the rotation of Q" 41 after the

translation is double the angle between the 7;;th sides of @} and Q], therefore it

. )
is 2w —— at most. Hence

1@
BQY 1, Qjx1) < BQY 1, Qi) HB(Q 41, Qjgn) < 27 i +7 g =3 :
i+ W5 i1 Wi+ I+ d@Q)  dQ) 4(Q)’
~ _ )
Qa1 @r) € P @i, Qo) + 2@y, Byor) < (24 DIQ) 27 1) +6




394 Ya. B. Vorobets

Next, by the induction hypothesis

D(@)

. 2
1) (7 + 1)%9.

(4j+1) and p(Q;,Qy) < 27

~ )
B(Q;,Q;) < Trd(—QS

Consequently,

(4+2) and p(@5,Q) <2m 2B (G4 125 46,

BQ;, Q) <™ 1)

8
d(Q)
Since B(Q;, Q%) = B(Qj+1,Qj4+1), it follows that

ﬂ(Qj+17ij+1) < IB(ijle ]+1) +ﬂ(Q]+17QJ+1) T Ay ( (.7 + 1) + 1)

d(Q)

We can obtain ;41 from Q7. ; by making the translation that sends p” into p
and then rotating around p. The distance between p" and p is not greater than
p(Q;,Q%), while the rotation angle is not larger than B(Qj,QY), therefore we have

the inequality p(Qj+1, Q1) < p(Q;,Q)) + D(Q) - B(Q;, Q). Hence

p(Qi+1,Qj11) < p(Q5, Q%) + D(Q) - B(Q;, Q%) + p(Q ;’H,Q}-H)

D(@Q), . 2 D(Q) D(Q)
( Q) (]+1)6+6>+ Q) )6+<36+2¢r d(Q)6>

D(@) . 5y
™ AQ) (7 +2)%.
This completes the proof of the inductive step.

We now fix an arbitrary ¢t > 0. Let (z,v) € Q x S! and let ¢; be some instant
of time, 0 < t; < t + D(Q). We consider the case when, by the time ¢;, the
billiard trajectories (z, (z,v), v, (z,v)) and (Z; (z,v), 0, (z,v)) have been driven back
equally often from the boundaries of @ and é, respectively; moreover, we assume
that the sides involved have had the same indices i1,1,...,%, in both cases. We
now use the straightening of the trajectories in question, which we already used
in the proof of Lemma 2.2. As a result we obtain two linear trajectories, X,
and X,, starting from z and ¢(z) in the direction v and passing consecutively
through the polygons Qo = Q,Q1,...,@n Or Qo = Q Ql,.. Qn, respectively,
where Q; = R, Ry, --- R;;(Q)and Q; = R; R;, - - ‘R;. (Q) 1 < 7 € n. The distance
between X, and X, is equal for each 7 to the distance between z and ¢(z). As
follows from the definition of ¢, the latter is at most 6. Let Q' be the image of @,
under the map (R;, Ri, -+~ Ri,)~! and let z' be the image of X;, under the same
map. Then the distance between z’ and 7y, is equal to that between X, and th
therefore it is at most 6. The transformation R = (R;, Ri, --- Ry, )~ 'Ry, R, - R,
takes Q' to @ and the point z’ of Q' is taken to z;,. Since R is an isometry, the
distance between r’ and z;, is at most p(Q’', Q). Hence the distance between x;,
and Z;, is not greater than

§+p(Q,Q) <5+ p(Q,Q) +p(Q,Q) <26+ p(Q', Q).

Erg
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The quantity p(Q’,@) is equal to p(Qn,Qn), while the latter quantity does not
D(Q)

d(Q)

x¢, and T, is at most

exceed 27 (n+ 1)24, as has already been proved. Hence the distance between

D(Q)

26 + 27 Q)

(n+1)%6 < C(N; + 1)2%6,

D(Q)
d(Q)
tory in ¢) by the time ¢+ D(Q). Incidentally, the distance between z;, and ¢! (Zy,)
is at most (C + 1)(N + 1)26.

As regards the directions vy, and %;,, they are mapped to v by the transforma-
tions R;, R,, --- R;, and Eiléiz ~--Ein, respectively, therefore the angle between

them is at most 2(a;, + a;, + -+ + a5, ), which on its part is less than or equal to

27

We now consider the case when one of the trajectories (z,,v,) and (Z,,v,) has
made n rebounds at the boundary of the corresponding polygon by the time ¢,
0 < t; < t, while the other has made one rebound fewer. Moreover, we assume
that both trajectories will have made n rebounds some time later and all these n
rebounds will have occurred at sides with equal indices. Let ¢_ and ¢4 (¢t_ < ¢, ) be
the times of the nth rebounds and let ¢ be the index of the corresponding sides of Q
and Q Clearly, 0 < t_ € t1 < t4 < t+ D(Q). It follows from the above that the
distances between =, and Z, at times t_ and ¢ are not greater than C(V; + 1)24.
At each of these instances, one of the points is on the ith side of the corresponding
polygon while the other lies at a distance not greater than

C(N; +1)26 + p(Q,Q) < C(N; + 1)%6 + 8 < (C + 1)(N, + 1)%5

where C = 3n and /V; is the largest number of rebounds of a billiard trajec-

from the ith side of the corresponding polygon. Since the trajectories (z,,v,)
and (Z.,v,;) do not hit the boundaries in the period of time between ¢t_ and ¢, for
each instant in [t_, ¢;] and, in particular, for 7 = t, the distance from z, or %, to
the boundary of Q or Q, respectively, is at most (C + 1)(Ny + 1)26.

We now partition @ x S* into two subsets A(t) and B(t). We assign a point
(x,v) € @xS' to A(t) if there exists ¢ > ¢ such that, by the time #', the trajectories
(z-(z,v),v.(z,v)) and (Z,(z,v), U, (z,v)) have hit the boundaries equally often and
at sides of () and @ with the same indices, and if, moreover, the difference between
the numbers of hits at the boundary made by these trajectories by an arbitrary
time 7, 0 < 7 < t/, is at most 1. The set B(t) consists of those elements of Q x S!
left outside A(?).

By Lemma 2.2 the quantity N; +1 is not larger than Cyt + C», where C; and C5
are certain constants dependent on Q. We set Cy = Cs = C'+1 and Cs = 27/d(Q).
Then we obtain in view of the above that for each (x,v) € A(t) and for each T,
0 < 7 < t, one of the properties (1) and (2) in the statement of the proposition
must be satisfied.

For each (z,v) € B(t) there exists t;, 0 < ¢; < ¢, such that the billiard trajecto-
ries (7, (z,v), v, (z,v)) and (Z,(z,v), v, (z,v)) have hit the boundary equally often
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by this time and at sides of ¢} and é with the same indices, but afterwards, either
(a) one of the trajectories goes directly to a vertex of the corresponding polygon,
or (b) the next sides hit by these trajectories have distinct indices, or (c) one of the
trajectories hits the boundary twice before another hits it once. Let By(t,C") be
the set of (y,u) € Q x S, such that the straight line through y in the direction u
passes at a distance less than C'(Cyt + C3)?8 from some vertex of Q. It is easy to
show that in each of the above cases (a), (b), and (c) the pair (z¢,,v:,) belongs to
By(t,C'") for sufficiently large values of C’ dependent on @ (but not on t). Hence
the set By (t,C') of elements (z,v) € @ x S occurring in By(t, C') under the action
of the billiard flow in @ at time ¢ or earlier contains B(t) for the same value of C'.

For an arbitrary direction v € S! the measure of the set of x € @ such that
(z,v) € By(t,C') clearly has the upper estimate 2C'(Cit + C2)%8 - D(Q) k(Q).
Hence

% X(Bo(t,C")) < 21 - 2C"(C1t + C2)?6 - D(Q) k(Q).

Straightening the billiard trajectory we can obtain the same estimate for the
measure of the set of elements (z,v) € Q x S! getting into By(t,C’) under the
action of the billiard flow upon hitting some fixed sequence of sides. Let K be
a number satisfying the condition described in Lemma 2.2. Then the elements
(z,v) € Q x S! taken into Bo(t,C’) by the billiard flow before the time d(Q) hit
the sides of @ fewer than K times. In view of the above, the measure of the set
of such elements is at most (k(Q) + 1)X 47 C'(C1t + C2)?6 - D(Q) k(Q). Since the
measure p X X is invariant with respect to the billiard flow, it follows that

1 x A(By(t,C") < (t/d(Q) +1) (k(Q) + 1) 4xC'(C1t + C2)*6 - D(Q) K(Q),

which is not larger than Cs (Cit + C»)38 with some constant C3 dependent on Q.
Since the set B(t) lies in By (t,C'), this completes the proof of the proposition.

Proof of Theorem 1.1. By the statistical ergodic theorem, to prove the ergodicity
of the billiard flow in @ it suffices to establish that for each function F(z,v) on
Q x S? that is integrable with respect to u x A we have

1

Z/o F(T5(z,v)) dr — 1

2m - Area(Q) Qx St

in the space L1(Q x S!,u x )\). It suffices to prove this convergence for a family
of functions such that their linear combinations are dense in Li(Q x S*, u x A).
Let this be the family of functions of the form F(z,v) = f(z)h(v), where f is a
Lipschitz function in @ vanishing at the boundary of  and h is a Lipschitz function
on S'. Further, since p x A is invariant with respect to {TC‘Q}, the function

a(t) = /Q .

Fd(pux)) ast— oo

| YL 1
?/0 F(TQ(z,v)) dr — m /stl Fd(p x /\)| du(z) dA(v)

satisfies the relation (¢t + ') q(t +t') < tq(t) + t' q(t") (t,t' > 0). Consequently,

we have lim;_, o, ¢(t) = inf;~¢ ¢(t) and it suffices to show that ¢(t) takes arbitrarily
small values.
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Let N > 0 be an integer such that the angles between the sides of ¢ can be
. . . n . .
approximated with precision §(N) by angles of the form N where n is an inte-

ger and the fractions %, nﬁz, ceey 7]L\f_k corresponding to distinct angles cannot be

cancelled by the same integer. By hypothesis, we can choose N arbitrarily large.
We set A = k(Q)D(Q)d(N). For sufficiently large N the value of A is smaller

than %d(Q). By Lemma 2.1 there exists a A-perturbation Q of Q such that the

angles between its sides are of the form 7§ with integer n. The angles between

the pairs of corresponding sides of () and Q are 7 - A/d(Q)-close (see the proof
of Proposition 2.3). For N sufficiently large this quantity is smaller than 7/N,
in which case the angles between the sides of () are unambiguously defined, that

%, ceey We ngte
that rotations through angles twice as big generate the rotation subgroup of G(Q).
. . ny N2 g . .
Since the fractions NNUN are simultaneously uncancellable, this subgroup
is cyclic and generated by the rotation through 27 /N, while the order r(Q) of G(Q)
is 2N.
We now consider an arbitrary triangulation of @ by diagonals, the analogous

triangulation of @ (this is well defined since A < %d(Q)), and define a map ¢ of @
onto @ taking each triangle in @ affinely to the corresponding triangle in @ The
distance between = and ¢(z) is at most A for each x € Q. Let P be a triangle in
the partitioning of @ and let ¢p be the linear part of the restriction of ¢ to P.
For each vector v we can find a segment of length d(Q) parallel to v in P. Hence
lop(v) —v] < 2A/d(Q)|v|. From now on, we assume that N is sufficiently large so
that A < {5d(Q). Then |pp(v)| > 2 |v|, that is, the map ¢~ is Lipschitz on the

triangle o(P), with Lipschitz constant 2. Since P was chosen arbitrarily, ¢! is
gle ¢ I 1 Y ¢

Lipschitz on the entire polygon Q. We now estimate the determinant of ¢ p, that
is, the Jacobian J(yp) of . The entries of the matrix corresponding to ¢p with
respect to an orthonormal basis are 2A/d(Q)-close to the entries of the identity
matrix. Hence

lﬂw—n<@+§%f+(£%f_

3 < J(0) < 3

We now define a function F on Q x S* as follows: f‘(z,v) = F(p~z),v) for
each element (z,v) € Q x S*. We recall that F(z,v) has the form f(z) h(v), where
f and h are Lipschitz functions on @ and S!, respectively, and f vanishes at the
boundary of Q. Let Lo, Ey > 0 be such that Lg is the Lipschitz constant for f
and h, and assume that |f(z)| and |h(v)| are not larger than Ep for all z € Q,
v € S'. Then, in view of the above, f(¢~!(z)) is a Lipschitz function on Q with
Lipschitz constant %Lo. Hence F(z,v) and F (x,v) are not larger than E = E? in
absolute value, are Lipschitz with respect to both variables with Lipschitz constant
L= %LOEO, and vanish for z at the boundary of @ or Q, respectively.

n Ng . ..
is, they are equal to the angles WNI’ s ﬂﬁk indicated above.

A A A
“‘m(m“)“m-

In particular
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We now introduce the constants C' = 4 Area(Q) - L/E and C" = o/n, where «
is the sum of all the interior angles of Q, and C'""" = 16 Area(Q)/d?*(Q). Further,
we set iy = C'N - NUH(C'N)CNICNE opore H(n) = (500n)2™"

The quantity ¢(tx) has the following estimate:

gitn) < i(tn) + g2(tn) + g3 + qa,

where
a1 (t) /stl %/OtF (T5(z,v)) T—%/Otﬁ(Té((p( ),v)) dr| du(z) dA(v),
w0= [ [ [P
_ m EGZ(Q) / (y,9v) du(y)‘du(x dA(v),
ZZZEQ) 1| r0) GZGY_:(Q)/ F(y, gv) du(y) ——/~ Fd(p % )\)‘dz\(v),
= Area(@) | s éwﬁd(ﬂ X A) - m [ P A)‘_

We now verify that each of the terms in the above sum is arbitrarily small for vV
large. The estimate of g4 is the easiest, for

+|/6X51Fd(ux/\)—/Qx51Fd(ux)\)‘.

Area(Q) 1’ B
Area(Q)

However,

Area(Q) = /Q J(¢) du, /Q P = /Q  Fle0) T0)(e) du(z) dA(w).

Hence, first,

‘/~ ﬁd(ux)\)—/ Fd(ux \| <5E
QxS! QxS!

~ A
and, moreover, | Area(Q)) — Area(Q)| < 5—— - Area(Q); in particular, we see that

* i@
1 Area(Q) < Area(Q) < 2 Area(Q). Consequently

<27 Area(Q®),

A
d(Q)

A
<25 Q) E+5Ed(Q) 27 Area(Q),

which is small for large N.
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3

+q3 + q4,

T(p(),v) dr

du(z) dA(v),

- /@ F(y, gv) du(y)‘ dp(z) d\(v),

(y) - 517; /stl Fd(u x A)l dA(v),

1

TealQ) Jous Fd(p x /\)l

ove sum is arbitrarily small for N

A —

X A) /QXSIFd(ux)\)..

/ F(z,v) J(¢)(@) du() dA(v).
QxS?!

< 5E —— - 27 Area(Q),

| A
1 d(Q)

'Area((Q); in particular, we see that

Ay

j -2 Area(Q),
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We now estimate g3 using the fact that the group G(Q) contains a rotation
through the angle 27 /N. Hence for arbitrary directions v,ve € St we can find an
element go of G(Q) such that the angle between v and govp is at most 2m/N. In view

of the properties of F we have |F(y, gv) — F(y, g9gov0)| < 27 L/N for all g € G(Q)

and y € Q. Adding these inequalities for all g € G(Q) and then integrating with
respect to y, we arrive at the estimate

> /éﬁ(y,gv) duy) = D /~ F(y, gvo) du(y)‘ < 27 % -r(Q) Area(Q).
9€G(Q) 9€G(Q)

On integrating also with respect to vo we obtain that ¢ < 27 L/N - Area(Q).
Next, we pass in the integral g2(ty) from the variables z,v to p(z),v. In view
of the inequality J(p~*) = J{p)~' < 2 we obtain

t -~
%/0 F(Té(x,v)) dr

1 ~
_—==" F , d d dX .
7(Q) Area(Q) geg@)/é (¥, 9v) N(y)‘ u(z) dA(v)

q2(t) < 2/~

QxS

We set ¢ = 1/N in Theorem 3.1 (see §3) to obtain
g2(tn) < 2-87E/N - Area(Q) < 32 E/N - Area(Q),

provided that

)m+5

tn > L_'_%_(Q_)‘N(Mm)s@)/dﬁ(@)-zv

?

where S(Q) = r(Q) Area(Q), m = r(Q) - &@/(27), and @ is the sum of all the
interior angles of the polygon Q. This condition is satisfied because r(Q) = 2N,
S(Q) = 2N Area(Q) < 4N Area(Q), d(Q) > d(Q)/2, & = a, and, consequently,
L-S(Q)/E < C'N,m=C"N, and S(Q)/d*(Q) < C"N.

Finally, we obtain an estimate of q1 (tn) using Proposition 2.3. Let Bc@xS!
be the set associated by this proposition with the polygons Q@ and @, the map ¢,
and the time ty. The measure of B is at most C3(Citn + Cy)? A, where Cp, Cy,
and Cj are constants depending on Q. We consider an arbitrary point (z,v) lying
in Q x S' and outside B. For each 7, 0 < 7 < ty, we set (zr,v7) = Té(z,v)
and (T,,7,) = Té (¢(z),v). By Proposition 2.3 either the distance between z, and
¢~ 1(&,) is not greater than C3(Citn + C,)?A and the angle between v, and Ur
is at most Cs(Citny + C2)A, or the points z; and %, lie at distances not greater
than Ce(Citn + C5)?A from the boundaries of @ and é, respectively (here Cy, Cs,
and Cg are constants dependent on Q). In the first case

\F(z,,0;) — F(&:,0:)] < L- (CalCrtn + C5)? + C5(Citn + C2)) A,

-
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while in the second case |F(z,,v; )|, |F(ET, U:)| € L-Cs(Crty +C3)? A. Since T was
chosen arbitrarily, we see that the integrand in ¢; (tx) is at most L-C (C1tn+C2)? A
for the values of  and v in question, where C is a constant depending on . Hence

(Il(tN) <L- C(C1tN + 02)2A <27 Area(Q) +2F - Cg(CltN + CQ)SA.

We choose the function §(N) so that the right-hand side of this inequality converges
to zero as N — oo.
Hence ¢(t) takes arbitrarily small values, as required.

3. Billiard in a rational polygon

In this section we prove results on the ergodic properties of the billiard in a
rational polygon and of the geodesic flow on a surface with flat structure.

Let @ be a rational polygon of arbitrary form, let G(Q) be the group generated
by the linear parts of the reflections with respect to its sides, let r(Q) be the order
of G(Q), let a(Q) be the sum of all interior angles of @, and s(Q) the length
of its shortest generalized diagonal (that is, a billiard trajectory with end-points

(@) - o(Q)

at vertices of ()). We also set m(Q) = T (m(Q) is an integer) and
7
5(Q) = r(Q) - Area(Q).
We denote by {T"} the billiard flow in Q. For each measurable function F(z,v)
on the phase space @ x S! of the billiard we denote by S*F(z,v) the average value
of this function under the action of the flow {77} over the period ¢, that is,

StF(x,v) = %/0 F(T" (z,v)) dr.

Theorem 3.1. Assume that L, E > 0 and that f,(z) = F(z,v) is a Lipschitz func-
tion on Q with Lipschitz constant L for each direction v € S'; assume, moreover,
that F(z,v) =0 for z € 0Q and |F(z,v)| < E forallz € Q andv € S*. Then

1

Area(Q) Qx St

1
StF V) — ———— F(y, d < .
@) - 555 gg{j@ [ Fngv) u(y)'du(w) dA(v) < 87E ¢
m(Q)+5

! m -S 52 ‘1/e
fort> L@(l) (H(n(Q)5(Q)/5*(Q) 1/¢)

F €

and for each €, 0 < & < 0.999, where H(1) = 250, H(m) = (500m)(2m)2"‘ for
m > 1, p is Lebesgue measure on @, and A is Lebesgue measure on S' normalized
so that \(S') = 2.

We shall reduce this theorem to Theorem 3.2 concerning flat structures.

Definition 3.1. A flat structure on a compact connected oriented surface M is
an atlas w = {(Ua, fa)} of charts (where U, is a subdomain of M and f, is a
homeomorphism of U, onto a subdomain of R?) such that

— all the transition functions are translations of R?;

— the domains U, cover the whole of M except for finitely many points, which
are said to be singular;
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— a punctured neighbourhood of each singular point is an m-sheeted covering
of a punctured neighbourhood of some point in R? with covering map that
is a translation with respect to each coordinate system in w; the number m
is called the multiplicity of a singular point.

Equivalently, a flat structure is a metric of zero curvature on M with finitely
many singular points such that we have a conic singularity of angle 2rm at each
singular point, where m is an integer (the multiplicity of the singular point). A flat
structure w gives rise to a geodesic flow on the surface. This flow is not defined
everywhere (if a trajectory arrives at a singular point, then it cannot be continued
any further), but only on a subset of full-measure (we mean, with respect to the
measure p, associated with the metric). The velocity is an integral of the flow,
that is, the phase space M x S! of the geodesic flow (of unit velocity) is foliated by
the invariant surfaces M x {v}. We can consider the restriction of the flow to an
invariant surface as a flow on M (the flow in the direction v).

Definition 3.2. A saddle connection in a flat structure w is a geodesic segment
joining two singular points (maybe coincident) and with no singularities among its
interior points.

Let w be an arbitrary flat structure on M. Let S be the area of M with respect
to the measure p,, let s be the length of the shortest saddle connection w, and
let m be the sum of the multiplicities of the singular points in this structure. In
what follows we assume that m > 0. There is no loss of generality because we can
declare an arbitrary non-singular point to be a singular point of multiplicity 1.

Let {77} be the geodesic flow on M defined by w. For each measurable function
F = F(z,v) on M x St let SLF be its mean value over the time ¢ under the action
of {T]}.

Theorem 3.2. Assume that L,E > 0 and that the function f,(z) = F(z,v) is
a Lipschitz function on M with Lipschitz constant L for each direction v € S*;
assume, moreover, that |F(z,v)| < E for allz € M and v € S'. Then

1
S M xSt

St F(z,v) — 1 F(y,v) dpe, (y)| dpo (z) dA(v) < 8TE - €
S Im

for t> —

I}_f (1) (H(m)-s/521/¢)™ "

3

and for each ¢, 0 < £ < 0.999, where H(m) is the same function as in Theorem 3.1.

We do not use the next result in our proof of the central theorem, but it is an
immediate consequence of our discussions in this section.

Theorem 3.3 [2]. (a) Let Q be a rational polygon. Then the restriction of the
billiard flow in Q to the invariant surface Q x G(Q)v is strictly ergodic for almost
all directions v € S!.

(b) Let w be a flat structure on a surface M. Then the restriction of the geodesic
flow {T7} to the invariant surface M x{v} is strictly ergodic for almost all directions
veSh
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Remark. Usually, we regard the strict ergodicity as a property of a homeomorphism.
In the present case, the strict ergodicity means that there exists a unique normalized
Borel measure p such that the corresponding flow is defined almost everywhere with
respect to p and preserves this measure.

First, we use a construction of Zemlyakov and Katok [1] and reduce the assertion
about rational polygons to similar assertions concerning flat structures.

Lemma 3.4. Theorem 3.1 is a consequence of Theorem 3.2. Assertion (a) of

Theorem 3.3 is a consequence of assertion (b).

Proof. Let @ be a rational polygon. We consider the direct product @ x G(Q) and
identify elements of the form (z,g) and (z, 9g,), where z is a point on the side a
of @, g. is the linear part of the reflection with respect to this side, and g € G(Q).
This done, we obtain a compact connected oriented surface M. The family of
charts {(U,, fy)}gec(q), where U, = int Q x {9} and f,(z, g) = gz, can be uniquely
complemented to a flat structure w on M. The singular points of this structure
correspond to the vertices of (). Let m be the sum of the multiplicities of the singular
points. Then the sum of the angles at all the singular points is 2am; on the other
hand this sum is equal to r(Q)-a(Q) by construction, therefore m = m(Q). The area
S of M with respect to the flat structure w is r(Q) - Area(Q@) = S(Q). The natural
projection of M onto () maps saddle connections onto generalized diagonals of the
same length, and each generalized diagonal is the image of a saddle connection.
Hence the length s of the shortest saddle connection w is s(Q).

There exists a natural projection ¢ of M x S onto @ x S! taking ((z,g),v)
o (z,¢g7'v). The map ¢ transforms the geodesic flow on M into the billiard flow
in Q. For all v € S!, except for finitely many directions invariant with respect to the
reflections in G(Q), the map of the surface M x {v} onto (M x {v}) = @ x G(Q)v
is a homeomorphism, therefore the restrictions of the geodesic flow to M x {v}
and of the billiard flow to @ x G(Q)v are both either strictly ergodic or not. This
reduces assertion (a) of Theorem 3.3 to (b).

Let F(z,v) be a function on @ x S! satisfying the assumptions of Theorem 3.1.
Then the function F = F o won M x S* satisfies the assumptions of Theorem 3.2
(it is essential here that F'(z,v) = 0 for z € 8Q). Further,

Z / (z,gv) du(zx S/ (z,v) dp, (z)

geG(Q)

for each v € S'. In addition, St F = (S'F) o ¢. Finally, i x A (¢(A4)) = po x A (A)
for each measurable subset A of M x S* that is mapped bijectively onto o(A). As
a result,

/stl

5'F(e.0) - g EGZ(Q) / (v, gv) du(u)‘du(w ) dA(v)

SF@o) - 5 [ Fo duw(y)‘ dp(2) dA(w),
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where J is an arc of the circle that is fundamental for the action of G(Q) on S!.
The circle is a disjoint union of r(Q) such arcs, therefore

/Q><S1
1

T(Q) M xSt

t L v T v
e -5 3, Fns )dusy)| dua) dX)

stFeo) -5 [ Fw duu(y)' () dA(v).

Hence Theorem 3.1 is an immediate consequence of Theorem 3.2.

In what follows we consider the geodesic low corresponding to a flat structure w
on a surface M. Our aim is to prove Theorem 3.12, from which we shall derive
Theorem 3.2 and Theorem 3.3(b).

For each v € S we denote by {77} the geodesic flow on M in the direction v.
Let f be a continuous function on M. For arbitrary t > 0 and z € M we set

Sif() = 1 /O §(T]) dr.

The average S! f(z) is well defined if Tz is defined for 0 < 7 < ¢, that is, if the
trajectory starting at z in the direction v does not hit a singular point in time ¢ (in
particular, £ must itself be non-singular). We now introduce the following quantity,
which measures the uniformity of the averaging of f under the action of {T77}:

M; = M(f,v) = sup sup
T2t zEM

$156)= 5 [ 1w dneto)|

Then M, is a non-increasing continuous function of ¢ for ¢t > 0.

Proposition 3.5. Assume that for each £ € M there exists a line segment I
containing x, orthogonal to v and such that the trajectories starting at its interior
points in the direction v

(1) hit singular points no sooner than in time tg;
(2) return to I no sooner than in time 2tg;
(3) hit singular points or return to I no later than in time Cty.

If the flow on M in the direction v is minimal, then

My, (f,v) < Lt—f or  Mscy, (f,v) < My, (f,v) - (1 _ %)

for each Lipschitz function f with Lipschitz constant L.

Proof. We assume without loss of generality that / f(y)du,(y)=0. Since
M

[ seiw ) = [ fe)di) =o,
M M
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there exists £ € M such that St f(z) < 0. We now choose the segment I described
in the hypotheses of the proposition and containing this point. Condition (1) means
that the average SI°f is well defined on the entire segment I (with the possible
exception of its end-points). In addition, S f is a Lipschitz function on I with
constant L; in particular, S¥ f(y) < L - |I] for each y € I. It follows from condi-

L
tion (2) that 2t - |I| < S, therefore St f(y) < QTS Assume that M,;, > [;—S Then
0

2
S1 £(y) < Miy/2.

We now consider an arbitrary trajectory J of length ¢ > 3Cty in the direc-
tion v. The points of intersection with I partition J into segments Ji, Ja, ..., Jn.
Since {7} is a minimal flow, it follows from (3) that the lengths of the J; are at
most Cty. In particular, t < Cnty, therefore n > 4. We now partition each of the J;,
except for the first two and the last segment, into two pieces; the initial segment
J} of length to and the remainder J2. The segments J, + J5, JZ, 3 < i < n—2,
and J2_, + J,, of J are of length at least to by (2), therefore the mean value of f
on each of these segments is at most M;,. On the other hand, the mean value of

fon J! is equal to St f(y) for some y € I, therefore it is not larger than M,, /2.
Hence the average value of f on J is at most

%(Aéto to(n — 3) + Mto (t — t()(n — 3)))

to(n — 3) to(n — 3)
= . - ) . A S
Mo <1 2t ) S Mg (1 2 Cnty

:Mto-(l—(l—%)%> thOA(1—%).

Repeating all these arguments for the function — f we obtain that the mean value

1
of f on J has a lower estimate — My, (1 - %) Since the trajectory J was chosen
arbitrarily, it follows that

1
My € My, - (1 - @> for t > 3Cty,

1
and therefore we also have Mscy, < My, (1 - -8-5)

We find conditions for the applicability of Proposition 3.5 below in Proposi-
tion 3.8. Before stating that result we present several definitions and auxiliary
statements.

We associate with each geodesic segment I of a flat structure w (for instance,
a saddle connection) the vector depicting I in R? and defined up to the change of
the direction to the opposite one. For an arbitrary direction v € S?! let v(I) and
v1 (I) be the lengths of the projections of this vector onto the direction v and the
orthogonal direction, respectively. We denote the length of I by |I|.

Definition 3.3. Assume that ¢, > 0. Let B(t,¢) be the set of directions v € S

such that v(y) <t and v, () < €/t for at least one saddle connection y. We denote
the set of directions complementary to B(t,e) by A(t,e).
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In the discussions that follow we use repeatedly the following obvious result.

Lemma 3.6. Let I be a segment orthogonal to v and containing no singular points
in its interior. Consider the trajectories in the direction v starting at all the points
of this segment. Assume that at least two of them hit singular points and let ¢,
and ty be the times of the first and the second hits (0 <t < tz). Then there exists
a saddle connection v such that v(y) =t2 — 1, vi () < |I].

We shall require the following result also in § 4.

Lemma 3.7. If ¢ > S, then A(t,e) is empty for each t > 0. In particular,
s2/2<S.

Proof. For an arbitrary direction v we must find a saddle connection 7 such that
v(y) < tand vy () < /t. Let z be a singular point of the flat structure w. We draw
a line segment I of length ¢/t starting at z in the direction orthogonal to v. If we
arrive at a singular point when drawing, then this is the required saddle connection.
Otherwise we consider trajectories in the direction v starting at the points of 1. In
general, there can be several trajectories starting at z; we consider the one that
bounds the bundle (the band) of trajectories starting from the other points of I. Let
T be the time of the first return to I of a trajectory in this bundle. By Poincaré’s
recurrence theorem T' < S/|I| = S/e -t < t. Two cases are possible now. The
first is the case when at least one of the trajectories under consideration hits a
singular point at the time T or earlier. Let y be the end-point of this trajectory
belonging to I. If y = x, then we obtain a saddle connection, which is the required
one. For y # z a required saddle connection exists by Lemma 3.6. The second
is the case when the trajectories in the bundle do not arrive at singular points in
time T. Then it is easy to see that the trajectory from z intersects I at the time T
at some point z, z # x. Hence the trajectory from z in the direction opposite to v
hits a singular point at time T < t, so that we can again find the required saddle
connection using Lemma 3.6.

Thus, A(t,€) is empty for € > S. In particular, the set A(\/g, S) is empty, that
is, for each direction v there exists a saddle connection 7 such that v(7y) < V'S and
vi(y) < S/VS =V/S. Its length is at most v/25; on the other hand |y| > s. Hence
s < V2S5 and s?/2< S.

Proposition 3.8. Let v be a direction such that there exists no saddle connection
parallel to v. If v belongs to both sets A(2to,e) and A(24ty - (3i + 1)(S/e)**! ),
0<i<m+2, for some € > 0, then all the assumptions of Proposition 3.5 hold

with constant
C = 24(3m + 7)(S/e)™ .

Proof. We prove this proposition in three steps. First, for an arbitrary point z € M
we construct a line segment I orthogonal to v and of length A = £/(8ty) with
end-point z. This segment I has the following property: the trajectories in the
direction v from its interior points do not hit singular points and do not return to I
before the time 2ty. The second step is to find a subsegment Iy of I of length at
least A/3 such that the trajectories from the end-points of Iy hit singular points
no later than at the time T = 24tq - 3(S/€)%. The third step is the proof of the fact




e
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that the trajectories from the points of Iy in the direction v hit singular points or
return to Ip by the time Cty, where C is as in the statement.

Thus, let z be an arbitrary point of M. We draw line segments with end-
point z and of length 2A = €/(4ty) in the two directions orthogonal to v. If
one of the segments arrives at a singular point, then we do not continue it any
more. If z is itself a singular point, then we draw only one segment (any one). We
denote the union of these segments by I'; it cannot be a saddle connection or a
closed trajectory, for otherwise there exists a saddle connection orthogonal to v of
length at most |I'| < 4A = ¢/(2tp), which contradicts the condition v € A(2tg, ).
Hence I' is a segment with no singularities as interior points and at least one of

£ .

its end-points is non-singular. Since |I’| < 2 it follows by Lemma 3.6 and the
0

condition v € A(2t,¢€) that, of all the trajectories starting at the points of I’ in

the direction v, at most one hits a singular point by time 2t,. Hence one of the
two subsegments of I' of length 2A separated by z has the following property:
the trajectories from its interior points in the direction v do not arrive at singular
points by time 2ty. Let I" be this segment, let I be its half with end-point z, let
I'"" be the other half, and let y be the middle point of I”. We claim that I is the
segment required at the first step of the proof, that is, the trajectories from its
interior points in the direction v do not return to I by the time 2¢y3. For assume
that this condition is violated and the first return to I occurs at some time t < 2t,.
Then the trajectories from the interior points of I” continue to make up a single
bundle at time ¢, therefore either all the trajectories starting at the points of I or
all the trajectories starting at I'" intersect I" at this time. Hence the trajectories
from y in the direction v and in the opposite direction intersect I'' at the time ¢ at
some points z; and z_, respectively. These points, z, and z_, are distinct since
otherwise we obtain a closed trajectory parallel to v, in which case there must also
exist a saddle connection parallel to v. The point ¥y is at the middle of the segment
z-z4. Further, there are no saddle connections parallel to v, and therefore the flow
on M in the direction v is minimal (see, for instance, [1]). In particular, there is at
least one trajectory starting at z_z, in the direction v and hitting a singular point.
Let ¢’ be the time of the first hit, and let z; be the end-point of the corresponding
trajectory in z_zy. Then z, lies on the segment yz, because, by construction,
all the trajectories from the points of z_y intersect the segment yz, at the time ¢
and do not hit singular points before this time. Let z, € z_y be the end-point of
the trajectory that arrives at z; at the time # (the distance between z; and z, is
equal to the length of yz,). At time ¢’ + ¢ the same trajectory arrives at a singular
point. By Lemma 3.6 there exists a saddle connection v such that v(y) £t € 2¢g,
v1(y) < |z-z4| < €/(4to). However, this contradicts the condition v € A(2tp,¢€).

We now proceed to the second step in our proof. Let I; be an arbitrary sub-
segment of I of length A/3. We claim that trajectories starting at I in the direction
v hit some singular point not later than at time T = 24¢, - 3(S/¢)2. (We note that
the flow is minimal in the direction v and therefore at least one singular point
will be hit.) The first return to I; of an interior point of this segment under the
action of the flow in the direction v occurs at some instant ¢} that is not later than

S
t) = m = 24ty - S/e. If we have hit a singular point before that, then there is
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nothing to prove, for ¢ < S by Lemma 3.7 and therefore t; < 7'. Otherwise, all
the points of I; are still moving as a single bundle at the time ¢}. However, not all
of them return to I; at this moment (for otherwise no singular point whatsoever
can be hit). Hence the situation is as follows: the points returning to I; belong
to some subsegment with end-points wo and w;, where wp is an interior point
and w; an end-point of I;. Upon their return, all the points of wow, are shifted
by some distance from their initial position so that the point wog is taken to the
point wsq, the end-point of I; distinct from w;. We claim that the length Al of

e A . .
wowe is at least Ay = — - —. If A} > |I;|/2, then there is nothing to prove,

since |I,]/2 = 1/2- A/3 > A,. Otherwise we consider the points u;,us € I; that
are at the distances A} and 2A}, respectively, from w;. In time #}, the flow in the
direction v moves all the points in the segment uyw; into uyu,. Hence the time
between the first and the second hits of singular points by trajectories starting at
the segment upw; in this direction is at most #. Since v € A(t1,¢), it follows by
Lemma 3.6 that |usw;| > e¢/ty =¢/S - A/3, that is, A} = Jugw;|/2 > Ay,

The first return to I; of interior points in wswo moving under the action of the
flow in the direction v occurs at some time t, which is not later than the time
ty, = S/A; = 24to - 2(S/e)? and not before t{. All the returned points will be (at
the moment of the return) at distances smaller than A} from the end-point w; of
I, since otherwise they would pass the segment wow; before the time t. Hence
if no singular point has been hit yet, then some point w in wawp arrives at w; at
this moment. All the points of wow return to I; together with it. At the time
t\ + t, the point w returns to I; again, and if no singular point has been hit yet,
then all the points of wwy return to I, at this moment. Thus, by the time ] + t5,
either all points in I; manage to return to this segment or at least one of them
has hit a singular point. Since a singular point must be hit sooner or later, the
second alternative holds, that is, the first singular point is hit not later than the
time t{ + ¢ty < t; + t2, which is not later than time T'.

We now partition I into three equal parts. In each of the extreme parts we choose
points such that, moving under the action of the flow in the direction v, they hit
singular points not later than the time T. Let Iy be the segment with end-points
at these points. Its length is at least A/3, so that this is the required segment.

We now proceed to the third step in the proof. Let pi,...,px be the interior
points of Iy that hit singular points under the action of the flow in the direction v
before returning to Iy or hit the end-points of Iy when they return first. The number
of points hitting singular points before returning to Iy is not larger than the sum

of the multiplicities of the singular points, therefore k < m 4 2. Let 71,..., 7% be
the times of the arrival of py,...,px at singular points or the end-points of Iy. We
assume that the points pi,...,px are ordered so that 7 < 7 < - < 7. Let §;

(0 < i < k) be the length of the smallest segment in the partitioning of Io by
p1,...,pi. Using induction on i we shall now prove that 7; < 24tg - (3i — 2)(S/e) !

. € . .
for1 <i< kanddé; > 24ty (3% (5o for 0 < ¢ < k. For i = 0 we need

But indeed, |Ip| = A/3 = —6——, which is
24ty

only prove that 8y = |Io| > 24t, - S/e’

not less than & . Assume now that 0 < i < k and that we have already
24t0 - S/E
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€

24tg - (31 — 2)(S/e)t
partitioning of Io by the points py,...,p;_; that contains p;. Since |Jil = 8;_1, the
time T; of the first return to Iy of trajectories starting from interior points of J;
in the direction v is S/8;_1 < 24ty - (3i — 2)(S/e)**! at the latest. Some of these
trajectories do not return to interior points of Iy at time 7} (this holds, for instance,
for the trajectory starting at p;). However, this is possible only in the case when
some trajectory has already hit a singular point or an end-point of I, by this time,
that is, when 7 < T3, so that we obtain the required estimate of 7;. Next, let Ji
be the shortest segment in the partitioning of I by the points pi,...,p;. Then the
trajectories starting at the end-points of J! hit singular points at the time

proved the inequality 6, > Let J; be the segment in the

T+ T < 240 - (30— 2)(S/e)™+! + 24t - 3(S/e)? < 2480 - (3i + 1)(S/e) !

at the latest. By the condition v € A(24to - (3i + 1)(S/e)*! ) and Lemma 3.6 we

obtain
€

24ty - (3i + 1)(S/e)i+L

6 = |Ji| >

as required.
Let .J be one of the segments in the partitioning of Iy by p;,...,pr. Under the
action of the flow in the direction v the interior points of J return to Iy without

having hit its end-points or singular points. Hence they return all at the same time.

Since
€

24tg - (3k + 1)(S/e)kt+1
the time of return is, at the latest,

[J] > 6 >

S/ < S0k < 2480 - (3k + 1)(S/e)¥T2 < 24t - (3m + 7)(S/e)™+4,

Hence the trajectories starting at the points of I in the direction v arrive at singular
points or come back to Iy by the time 24ty - (3m + 7)(S/e)™**. Since the flow in the
direction v is minimal, the same assertion holds for the segment I containing Ij.

Hence I satisfies assumptions (1)-(3) of Proposition 3.5 with the required con-
stant C'.

For an arbitrary € > 0 we denote the quantity 24(3m + 7)(S/e)™ by C(e).
Let B (t,€) be the union of the m + 4 sets B(2t,¢) and B(24¢(3i + 1)(S/e)H*!e),
0 < ¢ < m+2. Foreach integer n > 0let By(t,e,n) be the set of directions belonging
to at least n of the 2n sets By (t,¢), B1(3C(e)t, ), . .., B1((3C(g))2n1¢t, €)

Lemma 3.9. Let f be a Lipschitz function with Lipschitz constant L on the sur-
face M and assume that | f(z)| < E forallz € M. Ift > LS/E, then for each direc-

tion v that is not parallel to a saddle connection and does not belong to B;(t,e,n)
we have

1 "
M n K2 (1 — ——1) .
c(e)zne(frv) <2 ( 80(5))

Proof. By assumption, v does not belong to the sets

Bi((3C)"t,e), Bi((3C)"t,e), ..., Bi((3C)"t,¢),
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where 1g,%1,...,1,—1 are certain indices, 0 < ip < i; <+ < ip1 < 2n—1. We
claim that _

1 7

M(gc)ajt<2E- (1—@) for 0 < j < n,

where 2, = 2n by definition. We prove this by induction on j. For j = 0 this
inequality is obvious since My (f,v') < 2F for each t' > 0 and each direction v'.
Next, assume that the inequality holds for some value of j, 0 < j < n. Since the
direction of v is not parallel to any saddle connection and v ¢ B;((3C)%t,¢), it
follows by Propositions 3.5 and 3.8 that

LS 1
M(SC)‘j+lt < max(m , M(SC)ijt(]‘ — @))

LS 1 y\i+1
< ryyrrare - = .
\max((gc)]t, 2E(1 SC) )

By Lemma 3.7 we have ¢ < S, therefore C = C(g) > 24(3m + 7) > 240 and, in

1 1 1
particular, 3C <1-— 30’ 2(1 - 86) > 1. Hence
LS E 1Yy’ 1)\’
— < - L El1-— ] €2E(1-— )
(3C)it ~ (3C) ( SC) ( 80)

so that
1 J+1
M(sc)i]+1t < QE(I — S_C’-) .

Since i; + 1 < 441, it follows that M(3C)1j+,t < M(sc)i]-+lt, which completes the
inductive step. The assertion of the lemma follows from the above inequality with
7 =n.

In what follows we find estimates for the measures of the sets B(t, ), Bi(t,¢),
and Bs(t,e,n). Here we shall use Theorem 4.1 proved in §4. The arguments used
in the proof of Lemma 3.10 are due to Boshernitzan [5].

Lemma 3.10. We have the inequality A\(B(t,e)) < C - €, where C; = 27 h(m)/s?
with h(m) = (400m)™*™ for m > 1 and h(1) = (3-27)8 (X is Lebesgue measure
on S1).

Proof. The set of directions B(e/t,¢) is the result of a rotation of B(t,¢) through
the angle 7/2, therefore the measures of these sets are the same. Hence we can
assume without loss of generality that t > €/t.

Let v be a saddle connection and let v be a direction such that v(y) < t and
vy (y) € €/t. We can estimate the length of v and the angle between v and v
(assuming that 0 < Z(7y,v) € 7/2) as follows:

Iyl <v(y) +vi(y) <t+e/t <2,

T T vi(y) 7w €
L(v,v) € —sinZ(y,v) = = - L= —.
N R T R




-
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. . T € . .
The measure of the set of directions making an angle at most 3 m with ~y is
ty
2
min (27r 4- 72r t|€ |) < t|7r| In view of the above estimates,
Y

B e) < ZE S,

where the sum is taken over all the saddle connections of length at most 2t.
Let v1,72,... be the saddle connections in a flat structure w indexed so that
I71] < 72| < -+ . By Theorem 4.1 there exist at most h(m) (I/s)? saddle connec-

tions of length not larger than I. Hence n < h(m) - (|y,|/s)? and |y,| > m vn

< h{m) (2t/s)?, so that setting

for each index n. Further, if |v,|
N(t) = h(m) (2t/s)? we obtain

S Yl < YA

S
lyl<2t n<N(t) n<N

o V) /N‘” dz _ /h(m \/N(t h(m)

52

< 2t, then n

SI

As a result, A(B(t,¢)) < 2me/t-h(m)/s* -t = 2me/s? - h(m), as required.

Corollary 3.11. We have A\(Bi(t,¢)) < (m+4)Cie, A(Bz(t,e,n)) < 2(m+4)Cie,
where Cy 1s as in Lemma 3.10.

Proof. The first estimate is obvious since Bj(t,e) is the union of m + 4 sets
of the form B(#',e). Next, for each direction v we denote by g(v) the number
of sets among By (t,¢), B1(3C(e)t,€), ..., B1((3C(e))?"~1t,¢) that contain v. The
function g(v) is the sum of the characteristic functions of 2n sets of the form
B1(t',¢), therefore

/ g(v)dA(v) € 2n(m + 4)C;e.
Sl

Since g(v) > n for v € Bs(t,e,n), we obtain n-A(By(t,e,n)) < 2n
therefore A(Bx(t,e,n)) < 2(m + 4)Ce.

(m + 4)016,

The following theorem sums up the results obtained earlier in this section.

Theorem 3.12. Lete; (0 <& < 1), &3 (0 < ez <0.999), L, and E be positive
constants. Then there ezists a set of directions B dependent on all these constants
such that its measure is at most 2wey, and for each direction v ¢ B and each
Lipschitz function f on M that has Lipschitz constant L and is not larger than E
in absolute value we have

m+5

LS (H(m)-S/s*1/e1)
ity <28 cx e 15(1)
2

E

where H(1) = 2% and H(m) = (500m)2™*™ for m > 1.

Erg

2
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52

PT‘OOf. We set € = m&l

(here h(m) is as in Lemma 3.10). Also, let

log1
= [ og 1/es _J (here [z] is the smallest integer larger or equal to z)
log(1 — 55r=7)
& 8C(e)

L
and let T = fS (3C(g))*™. By Corollary 3.11 we have A(Ba2(T,e,n)) < 2me;. If
the direction v does not belong to B2(T,&,n) or to the countable set of directions

1 n
parallel to the saddle connections, then M7(f,v) < 2E(1 — S—C“) by Lemma 3.9,

and the latter does not exceed 2F - €5 by our choice of n. Thus, the proof of the
theorem reduces to the verification of the inequality

LS (H(m)-s/s?1/e) "
<% (€2>
We now find a lower estimate for C = C(g). We have
C = 24(3m + 7) (2(m + 4) h(m) - S/s* - 1/e1) ™",
where 1/¢; > 1, while S/s* > 1/2 by Lemma 3.7, therefore

C > 24(3m + 7)((m + 4) h(m)) ™",

1\~
which is obviously larger than 1000. Hence (1 - —) < 1.001 < 1/e3, therefore

8C
1 1 ;
log(l—ﬁ) log(l—ﬁ)

Next,

log(l—i>—l log< 1 >> ! —l<———1 )Z

8C 8C —-1) 7 8 -1 2\8C-1
=L<1+ 8C -2 >>L
8C 2(8C — 1)2 8C

As a result, n < 2-8C -log1/e; and

LS

LS jtad) (1/62)32()-10g(30).

T < — (3C 32C-logl/ez _
5 (30)
The function g(z) = x!/* decreases for = > e, therefore (m + 4) =i < 51/5 and
(3m+7)7F < (3m+12)7Fz 3 < 15753 = 151/5. Next, (32 24)m i < (32-24)1/5.

Hence (32 - 24(3m + 7)(m + 4)) ™% < (32-24-15-5)!/% < 10. Consequently,

)'ITL+4

3C = 3-24(3m+T7)(2(m+4) h(m) 5/32-1/51)m+ < (20(m+4) h(m) S/s*1/e;

b
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therefore

32C - 10g(3C) < 32C - (m + 4) - log(20(m + 4) h(m) S/s* - 1/e1)
= 32-24(3m + 7)(m + 4) (2(m + 4) h(m) §/s> - 1/e,) ™+
x 10g(20(m + 4) h(m) S/s* - 1/e;)
< (20(m + 4)h(m)S/s* - 1/e1) ™ log (20(m + 4)h(m)S/s? - 1/e:)
< (20(m + )h(m)S/s* - 1/e,)™ .
Form =1,

20(m +4)h(m) =20-5-(3-27)8 < 20 = H(1).

2

On the other hand if m > 1, then 202m) ™" < 2047" < 201/120 4p4

1 m+4

(m + )@ = (m +4) T T (61/6)%( < (6Y/6)1/32 < g1/120,

B —2m
Hence (20(m + 4))(27”) < 1201/120 < 161/16 = 91/4 < 5/4 and

20(m + 4)h(m) = 20(m + 4)(400m) 2™ < (5/4 - 400m) ™" = H(m).

As a result,

32C - 10g(3C) < (20(m + 4)h(m)S/s* - 1/e1)™ " < (H(m) - S/s* - 1/e;)™"®

for each value of m, therefore

T

)

<L_S 1 Bzcvmg(sc)< LS/1 (H(m)-s75%1/6,) ™"
S B e E

€2

as required.

Proof of Theorem 3.2. We have the following estimate:
1

S Mx St

. 1
SoF(z,v) - §/M F(y,v) dﬂw(y)ldﬂw(]:) dA(v) §/ Mi(fo,v) dA(v).
st

We set €; = 5 = €. Let B be the set of directions corresponding to the parameters

€1,€2,L, and E, the existence of which is established in Theorem 3.12. Th
have M,(f,,v) < 2Ee for o e

+5

LS

P> 22 (H(m)-s/5%1/¢)"
= (1/e) )

)

prqvided that v ¢ B. If, on the other hand, v € B, then we can use the simplest
estimate M,;(f,,v) < 2E. Since A\(B) < 27, it follows for these values of ¢ that

/Sl M;(fo,v) dA(v) < 2E - X(B) + (21 — A(B)) - 2Ee < 87E - ¢.

R Y-
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Proof of Theorem 3.3(b). Let fi, fa,..., fn,... be a countable family of Lipschitz
functions on M that is dense in the space of continuous functions with respect
to the uniform norm. By Theorem 3.12 the set B, of the directions v such that
M;(fn,v) 7 0 as t - oo has measure zero. Hence M(f,,v) — 0 as t — oo for
each index n if v is outside a certain subset B C St of measure zero. Further,
if f and f are functions such that |f(z) — f(z)| < € for all z € M, then, clearly,
|M,(f,v) — My(f,v)| < 2€ for each t > 0 and each v € S*.

We now consider an arbitrary direction v ¢ B. Each continuous function f
on M can be uniformly approximated by functions in the sequence fi,..., fn,...,
therefore M;(f,v) — 0 ast — oo by the above. In view of the ergodic theorem, g,
is the unique (up to a scalar factor) measure on M that is invariant with respect
to the flow in the direction v.

4. Quadratic growth in the number of saddle connections

Let w be a flat structure on a compact connected surface M. Let m be the sum
of multiplicities of the singular points of w and let s be the length of the shortest
saddle connection.

The aim of this section is to obtain an estimate of the number N (L) of the saddle
connections of length not larger than L in w. The definitive result here is as follows.

2

Theorem 4.1. We have the estimate N(L) < h(m) - (—L—) , where h(1) = (3-27)¢
s

and h(m) = (400m)(2’")2m form > 1.

Remark. Masur proved in [4] that N(L) = O(L?) as L — oo for an arbitrary
flat structure. We have borrowed the entire inductive scheme of evaluation of the
number of saddle connections from [4]. However, we implement this scheme in an
essentially different way from the original one. In addition, we must point out that
we make no use of the language of the Teichmiiller theory, which is characteristic
of [2] and [4]. Instead, we use the language of projections, which is more suitable
for the derivation of effective estimates.

Definition 4.1. A complez K is either a saddle connection or a subdomain of M
bounded by pairwise disjoint saddle connections (two saddle connections are said
to be disjoint if they have no common interior points). The saddle connections
bounding K may include cuts, that is, saddle connections having the complex on
both sides.

An w-triangle is a triangle on M with vertices at singular points and with saddle
connections as sides that contains no singular points in its interior.

We now state the geometric properties of complexes and saddle connections
required for what follows.

Proposition 4.2. (a) Each collection of pairwise disjoint saddle connections can be
augmented to an w-triangulation of M, that is, to a partition of it into w-triangles.

(b) The number of w-triangles in an arbitrary w-triangulation is equal to 2m and
the number of saddle connections is equal to 3m.
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(c) An arbitrary complex K can be partitioned into w-triangles by saddle connec-

tions; the number d(K) of the resulting w-triangles is independent of the partitioning
and 0 < d(K) < 2m.

Proof. Assertion (a) is obvious, while (c) is a consequence of (a) and (b). We now
prove (b). Let m; and m3 be the numbers of the saddle connections and w-triangles,
respectively, in some w-triangulation of M. The total sum ¥ of all the angles of the
w-triangles is m3m. On the other hand, the sum of all the angles at a singular point
of multiplicity n is 27n, therefore ¥ = 27m and m3 = 2m. The equality ms = 3m
is a consequence of the obvious relation 2ms = 3ms.

We recall that we have denoted the lengths of the projections of a saddle connec-
tion vy (more precisely, of the vector depicting it in R?) in the direction v and the
orthogonal direction by v(7) and vy (7y), respectively, and we denote the length of
7 itself by |y|. If K is a complex, then let v(K) (or vy (K), or |K|) be the largest of
the quantities v(v) (or vy (7), or |y|, respectively) corresponding to all the saddle
connections v at the boundary of K.

Definition 4.2. Let [, 6, and C be positive numbers and let d be an integer,
0 < d < 2m. We say that a saddle connection v is (I, §, C, d)-close to the direction v
if

v(7) < (C+2)%1 and v, (y) < (C+2)%6/L
We say that v is (1,4, C, d)-insulated relative to v if it is (1,6, C, d)-close to v and
each saddle connection 7 # ~ satisfying the conditions

v(F) < C(C+2)% and v, () <C(C+ 2)46/1,
is disjoint from ~.

Let K be a complex containing a saddle connection v. We modify the definition
of an insulated saddle connection and request that the saddle connections ¥ in this
definition also lie in K. Then we obtain a definition of a weaker property, which we
call the insulation of v within K. The former definition relates to the case when K
is the entire surface M (with no cuts).

Definition 4.3. We say that a complex K is (l,6,C)-close to the direction v if
each of its boundary saddle connections is (I, d, C, d(K))-close to v.

In a similar way we can define the (1,4, C)-insulation of a complex K relative to
a direction v, both an ordinary one and within a complex K containing K.

Lemma 4.3. Let K be a subcomplex of a larger complex K and let v be a saddle
connection at the boundary of K that is not a cut. Assume that K is (I,8,C)-close
to some direction v, but at the same time vy is not (1,8, C,d(K))-insulated relative
to v within K. Then there exists a compler Ky such that it is (1,0,C)-close to v
and

(a) K C K, C K;

(b) the difference between K1 and K is a single w-triangle T and ~ is a side

of T,
(c) Area(T) < $6(C + 2)*™.

Er
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Remark. A result that is close in content was proved in [2]. A characteristic fea-
ture of our result is the additional condition that  be one of the sides of the
supplementary w-triangle T. We use this condition essentially in what follows.

Proof. The connection v is not (I, 8, C, d(K))-insulated relative to v within K, there-
fore there exists a saddle connection ¥ lying in K, intersecting 7y, and satisfying the
conditions

vHF) < C(C +2)M ) and vy (7) < C(C +2)") /1.

The connection v is not a cut in K, therefore we can choose a segment AB of
lying outside K such that A is an interior point of v and B is either a singular point
or an interior point of another saddle connection v lying at the boundary of K.

First, we shall find a segment ABy lying outside K, but inside K , such that By
is a singular point, the interior points of ABy are non-singular and, in addition,

v(ABo) < (C +1)(C +2)*)1 and vy (ABy) < (C + 1)(C +2)"K) §/1.

If B is a singular point, then there is nothing to look for since v(AB) < v(7) and
vy (AB) < v1(¥). On the other hand, if B is an interior point of a saddle connection
v, at the boundary of K, then we consider two points E; and E; on this saddle
connection lying on different sides of B. If E; and E; are close to B, then we can
draw segments AE; and AE, that, together with AB and a piece of vy, bound
triangles in M containing no singular points. If we start moving a point E; (i =1
or 2) away from B, then AF; hits one or several singular points at some moment.
Let B; be the one that is the closest to A. Then the segment AB; is a subsegment
of AE;, while the latter, together with AB and a piece of v, bounds a triangle,
therefore

V(AB;) < v(AB) +v(1) < C(C + 2)1F1 + (C + 2)01 = (C + 1)(C + 2)41

and, in a similar way, vy (AB;) < (C + 1)(C + 2)¥¥)§/1. By construction, the
segment AB; lies in the complex K and its interior points are non-singular, that
is, it is the required segment provided it is not a piece of 7. In any case, the latter
is impossible for AB; and AB, simultaneously, so that the required segment ABg
does exist.

Further, we consider a point B’ on the segment ABy. If B’ is sufficiently close
to A, then we can join it with the end-points of v by segments B'F, and B'F},
such that B'F,, B'F,, and 7 bound a triangle T’ containing the segment AB’
but with no singular points in its interior. We now move a point B’ as far from
A as possible, subject to such a triangle T” still existing. For this choice of B,
either some singular point is an interior point of B'F) or B'F,, or B' = By and
the segments B'F; and B'F, are saddle connections. In any case, 7' contains an
w-triangle T such that v is one of its sides. N

By construction, T lies outside K, but inside K. We add T to K and obtain a
new complex K; C K (we regard the points of v as interior points of K1). We claim
that this is the required complex. Let 7' be a side of T different from . Since v’
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lies in the interior of 7", its projection to the direction of v parallel to the segment
ABjy is not longer than +; in a similar way, the projection of 7' to the direction of
ABy parallel to « is not longer than ABj. Hence

v(v') < v(ABy) +v(y) < (C + 1)(C + 2)* 4+ (C + 2)1F)] = (C 4 2)4F)+Y

and, in a similar way, v, (v') < (C + 2)4K)+1§/].

Each saddle connection at the boundary of K either lies also at the boundary
of K or is a side of T. Thus, bearing in mind the equality d(K;) = d(K) + 1, we
have shown that K, is (1,4, C)-close to v. In addition, it follows from the above
estimates that

Area(T) < %U(T) v (T) < z(C + 2)4FD] (€ 4 2)KD 571 < %5(c +2)*m,

DO =

as required.
s
V2(C +2)2m

Lemma 4.4. Let v be a saddle connection (1,8,C,d)-close to a direction v. If

For each C' > 0 we now set lminp = lmin(C) =

[ 2 lnin(C) and 6 < 12,,(C), then
(a) v(y) 2 vi(y) and |y| < V2u(v);

v(v)
(b) (€ +2pm 2 Imin-

oo 12

Proof. We have vy (y) < (C + 2)46/1 < (C + 2)2"114 = % Consequently,
I7] > s > V2v () and we obtain the inequalities v(y) > v, (v) and vl < V2u(v);

vl o s :
= 2 —= = (C +2)*"Inin.
\/E \/5 ( ) m
Proposition 4.5. Let K be a complex that is not a saddle connection, let v be
a saddle connection lying in K, let v be its direction, and let C and § be positive
constants.

If 6 <12 (C) and § <

min

moreover, v(y) >

Area(K)
2m(C + 2)4m”’
connections Yo = ¥, Y1,---,¥n (N > 0) and a complex K C K such that the follow-
ing conditions hold for some sequences of integers dy,d,, . ..,d, and real numbers
ln,ll,, ..,lni

M lo=>h2 2l 2lmin;do =0<dy <+ < dyp < d(K) < d(K);
(2) v(v:) = (C + 2)%l;; moreover, the saddle connection ~y; lies at the boundary
of some compler K; such that K; is (1;,6,C)-close to v, d(K;) = d;, and

then there exist pairwise disjoint saddle

Y C K; C K;-

(3) the saddle connections v; and vy, are sides of the same w-triangle lying
n R;

(4) the saddle connection v, is (1,8, C,d,)-insulated relative to the direction v
within K

(5) the complex K is (In,d, C)-insulated relative to v within K;

(6) Area(K) < £ 2m(C +2)*™6 < 1 Area(K).

Erg
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Proof. We now consider various sequences of saddle connections yo = v, 71,.- -,
and complexes Ko = v C K; C --- C K; C K satisfying the following conditions:

(A1) the complex K; has no cuts, <; lies at the boundary of K;, and
v(Kq) = v(m);

(A2 =y =2lL 221 2 lnin, whereli=(c.—i%,0<i<t;

(A3) K; is (l;,8,C)-close to the direction v; for ¢ < t the complex K;,; is also
(1;, 0, C)-close to v;

(A4) the difference between K,;.; and K is a single w-triangle T;; moreover,
v; is a side of T; and Area(T;) < 36(C +2)*™.

There exists at least one such pair of sequences (for instance, for t = 0). Among
all these pairs we now choose one with the largest value of ¢t (such a pair exists
since t = d(K;) < 2m). We claim that this pair of sequences satisfies the following
additional condition:

(A5) the saddle connection 7 is (I, d, C,t)-insulated relative to the direction v
within K.

For otherwise we can use Lemma 4.3 to construct a complex K;+; C K such that
K.y is (I, 8, C)-close to v, contains K, and the difference of these two complexes
is a single w-triangle T; such that -, is a side of T; and Area(T;) < $6(C + 2)*™.
We now erase all the cuts in Ky, if there are any (that is, we add the points
of these cuts to the interior part of the complex). By construction, we have
Area(Kyy1) < (t+ 1) 16(C + 2)*™ < §2m(C + 2)*™4, which is at most 1 Area(K)
by our choice of §. In particular, the boundary of K;4, is still non-empty. Let v;41
be a saddle connection at the boundary of Ky, such that v{yi41) = v(Kpy1). We

U(Ye+1)
(C +2)t+1
fore l;11 < li; in addition, K4 is also (li41, 6, C)-close to v. Finally, li11 2 lmin
by Lemma 4.4. Hence the sequences vo,71,--.,Tt+1 of saddle connections and
Ky, Ky, ..., K1 of complexes satisfy conditions (A1)—(A4), which contradicts our
choice of t.

set ly41 = The complex K,y is (It, 8, C)-close to the direction v, there-

Based on (A4), we can now choose the numbers t; < t; < --- < t, = ¢ such
that v, = v and the saddle connection ~;,,, is a side of the triangle T}, distinct
from v, for each 0 < i €< n — 1. Without loss of generality we can assume that
Yo = V> Vt1s- - -» Ve, are all distinct. Then by condition (A1) and since the complexes
Ky, K;,..., K, lie in one another, these saddle connections are pairwise disjoint.

Continuing our construction we consider sequences of complexes I~{0, o K,
Ky=K;CK, C---C Ky C K, such that

(B1) K, has no cuts and is (I, 8, C)-close to the direction v;
(B2) the difference of K, ; and K; is a single triangle of area at most %6(C+2)4m.

Such sequences do exist (for instance, ones with © = 0, containing a single
element). We now consider a sequence of largest length. This sequence satisfies an
additional property:

(B3) the complex K, is (I, 6, C)-insulated relative to the direction v within K.
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This can be proved in a similar way to property (A5) above. By construction,
d(K,) =t + u > t. Further,

Area(Ry) < d(R.,) - %a(c +2)4™ < 9m - %5(0 +2)tm < -;- Area(K),

therefore, in particular, d(I?u) < d(K).
Summing up, we obtain that the saddle connections v,;, , . . . , Y., and the com-

plex K, satisfy conditions (1)-(6) for the sequences of indices 0, t,. .., ¢, and real
numbers lg,ly,...,1,.

Let K be some complex and let I' be a saddle connection at its boundary. For
each L > 0 let N;(K,I';L) be the number of saddle connections  such that

(S1) |y < L|TY;

(S2) 7 and T are sides of some w-triangle T, lying in K.

Let N2(K,T; L) be the number of saddle connections v satisfying the additional
two conditions

(S3) the angle between v and I in T, is acute and

(54) |yl = |T'l/2.

An intermediate step in our proof of Theorem 4.1 is an estimate of the value of
Ni(K,T; L), which we now embark on. The final product here is Theorem 4.15.

Lemma 4.6. We have N,(K,T;L) < 3-No(K,I;L + 1) for each L > 0.

Proof. For each saddle connection v satisfying (S1) and (S2) let 7 be the side of T,
distinct from v and I'. If « fails to satisfy one of conditions (S3) and (S4), then,
clearly, ¥ satisfies both. In addition, ¥ satisfies (S2) and |3| < |v|+ || < (L+1)|T].
We note further that an w-triangle with sides ¥ and I is unambiguously defined if
one indicates on which side of either saddle connection it lies. Thus, there are at
most four such triangles and it is easy to see that there are at most two of them
with an acute angle between ¥ and I'. Hence an arbitrary saddle connection can
play the role of ¥ for at most two saddle connections v failing to satisfy (S3) or (S4),
which gives the required estimate.

Let C, 6, and L be positive numbers and let n, ni, and n, be integers,
0 < n,n1,ny < 2m. We say that pairwise disjoint saddle connections 7o, ..., vn
and a complex K C K have the property P3 = P3(K,T';C,6,L;n,ny,ny) if there
exists a direction v and sequences do,...,d, of integers and ly,...,l, of real
numbers such that

(a) conditions (1)-(6) in Proposition 4.5 are satisfied;

(b) dp = ny and d(K) = ny;

(¢) o has properties (S1)-(S4).
We denote the number of all such collections by N3(K,T';C, 6, L;n, n1,N3).

Area(K)

7. <12 S olC 1 am
Lemma 4.7. Ifd <12, (C) and § 2m(C + 2)4m ’
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The proof immediately follows from Proposition 4.5.

Further, let L and o be positive numbers, 0 < ¢ < 1, and let ko,...,k, be
non-negative integers. We can define the property

133 = 133(K7F;Cy(s’LagaE;n:nlan;kOa v -akn)
using the definition of P; with (c) replaced by the following two conditions:
(¢') o has properties (S1) and (S2); B
(d") oL|T| € v(y) < Li|T|, where L; = o* L, 0 < i < n.
We denote the number of collections with property 133 by
N3(K7F;Ca(S’L7a,E;nan1)n2;k0) e akn>

Lemma 4.8. Assume that saddle connections 9,71, ---,Yn and a complex K sat-
isfy the property P3(K,T;C,6,L;n,ny,ng). If 6§ <12,.(C), then

1
T <o) < C+DMLL], - 0<i<n,

Proof. The upper estimate is obvious:
v(v:) = (C + )% < (C +2)™ | < (C +2)™ LiT.

Further, by properties (S2)-(S4), the saddle connections v and I' are sides of
some w-triangle T C K, the angle between them in this triangle is acute, and
|70l > |T'|/2. By condition (2) in Proposition 4.5 the saddle connection v; lies at
the boundary of some complex K;, vo C K; C K. If one of the saddle connections
v and T lies at the boundary of K;, then |K;| > %ll"] Otherwise g lies in the
interior of K; and I lies outside K;. Hence there exists a saddle connection 7 at the
boundary of K; that starts at the common vertex of vy and I" and intersects T'. Since
the angle between o and I is acute, the length of 7 is at least % min(|vol, |T),

which is greater than or equal to 5—1V7-2—|F|

Thus in any case |K;| > ﬁi|f‘| By the same condition (2) the complex K; is
(1;,8,C)-close to the direction v, therefore v(K;) > \%]Kﬂ > %|I‘| by Lemma 4.4.
Finally, v(y;) = v(Ks).

Corollary 4.9. For § <12, (C) we have

min
N3(K,TI;C, 6, L;n,ny,ny)
< > N3(K,T;C,8,L,0,(C + 2)™ L;n,ny1,n2; ko, - - -, kn),
0<ko, . kn <E(L,0,Cin1)
where k(L,0,C;n1) = log;,,(4(C +2)™ L).
Let S;(K,T;C,d,0,L;n,ny) be the set of saddle connections occurring as v, in

various collections 7y, - . ., vn, K satisfying the property
133 = 153(K=F;075$L/7Usi;nanlan2;k07 v -7kn)

for some values of L' | E, ng, and kg, ..., k, such that ok~ = L. We denote the
number of elements in this set by Ny(K,T;C, 6,0, L;n,ny).
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Lemma 4.10. Let v,5 € S4(K,I';C,8,0,L;n,ny) be intersecting saddle connec-

tions. If 6 <12, (C) and Co > \/_ then
_ c (C +2)2m
é(777) >4 (ﬁ - 1) Lzlrlg

Remark. Here and in what follows, we choose the value of the angle between two
saddle connections or between a saddle connection and a direction in the range
from 0 to = /2.

Proof of Lemma 4.10. By the definition of the set S4, the saddle connection -y
is (1,6,C,ny)-insulated and 7 is (1,8, C, ni)-insulated within K relative to some
directions v and v, respectively, where v(~y ) = (C+2)™1, 3(F) = (C + 2)mlI,
oL T < v(7),9(7) < LT}, 1 > lnin(C), and I > luin (C).

For definiteness, assume that { > I. Since v is (1,6, C,ny)-close to v, it follows
that vy (y) < (C + 2)™4§/l. Hence

Z(v,v) < tan £(vy,v) = U;(g;) < (?C++2;;;fl/l = l%.

Further, (%) < %v('y) and, in view of Lemma 4.4, we obtain |¥| < v2%(%); hence

v(¥) < A7l € V25(F) < ?v(v)-

Since Co > V2, it follows that v(¥) < Cv(y) = C(C + 2)™I. The saddle connec-
tion v is insulated relative to v, therefore v, () > C(C + 2)™§/1 by this estimate
and

L(,0) > sin LG,v) = ), CCLROL_C 5 C 0

Al V25(3) V2 17V e

It remains to observe that Z(vy,%) > Z(¥,v) — Z(v,v), while by the above,
- C é C (C + 2)2m ( C ) (C +2)2m
LEW)~Lrv) > {—==1) = =6 —=-1)—"2 > L) T2
G2t > (1) =5 1) G 2 o( 1) T

Lemma 4.11. If§ <

12..(C) and Co > /2, then

. . 2
Ny(K,T;C,6,0,Lin,n) < Sm( 27rc Area(K)-1/o I+ 221/0) 4 1).
H(F-)(C+2m 51

Proof. Let v be a saddle connection in the set Sq(K,T;C,8,0,L;n,n;) and let
Y0y« -5Yn = ¥ and K be the corresponding collection satisfying the property Ps.
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C +2)™4§/1 by this estimate

c s _C 6
NIRRT

, while by the above,

n 2n,
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— __.W

V2

S
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v satisfying the property P.
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Let v be the direction of 9. Then the saddle connections v, and I' are sides of
some triangle T lying in K, therefore

_ 2Area(T) _ 2Area(K)

sin Z(T',y) = <
7 ool Il
Hence Area(K)
s 7 Area
Z(L,v) = Z(T, < = sin £(T,  —2
By property P; we have oL|T| < v(y) < LIT| and v(vy) < (C + 2)™ ||, therefore
7 Area(K)
T,v) ¢ Lot m
Z(T,v) LT (C+2)
Next,

_wi(y) _ (CH+QMEL b
Z(’)/,U) < ta,né(’y,'u) - ’l)(’)/) < (C+2)nll - l_z ’

where v(y) = (C + 2)™ 1. Using the inequality oL |I'| < v(7) again we obtain

5(C + 2)2m
£ S S5
Thus,
7 Area(K) §(C + 2)*m
< < — 2z 1 —_
(L) < LT,v) + £(y,v) < AINE (C+2)™ + P ETNE

We denote the right-hand side of the resulting inequality by ¢. By the above, the
directions of all the saddle connections in the set Sy belong to some arc of length 2¢.
We partition this arc into subarcs of length

_(C (C +2)*™
o= 1) T

and maybe also a subarc of length smaller than ¢,. The number of these subarcs

2
is at most —2 + 1. By Lemma 4.10, saddle connections in S; with directions

0
belonging to the same subarc are disjoint; hence their number is at most 3m by
Proposition 4.2. Consequently,

2
N4(K,T;C,6,0,L;n,n1) < 3m(—(‘€ + 1>,
Po

which, on substituting our expressions for ¢ and ¢, delivers the assertion of the
lemma.

Let v be an arbitrary saddle connection and let K be a complex. We say that a
complex K C K has property Ps(K,~;C,8;ny,ny) if there exist a direction v and
a real number ! > [5;n(C) such that

(a) vis (I,9,C,ny)-close to v and v(y) = (C + 2)™1;
(b) K is (1,8, C)-insulated relative to v within K and d(K) = n,.

Let Ns(K,v;C,8;n1,n2) be the number of complexes with property Ps.
We denote the set of saddle connections bounding these complexes by
§5(K, v; C, 8;n1,n3).
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Lemma 4.12. If§ <12,.(C) and C 2> 4+/2, then the set Ss(K v;C,8;n1,n2) con-
sists of pairwise disjoint saddle connections.

Proof. Assume the contrary: let ' and 4" be intersecting saddle connections in
S5 (K,v; C,8;n1,m2). Let K' and K" be complexes satisfying property P5 such
that +' and ", respectively, lie at their boundaries. Let v',v" and I',l" be the
directions and real numbers corresponding to K " and K". By condition (a) in our
definition of property Ps,

v'(y) = (C+ 2™, v () <
V(7)) = (C+ 2™, V() <

(C +2)™ 6/l
(C +2)m /1",

therefore

W) _ (CHRml_

L', y) < tan Z(v',7) = ) ST(C+ 2l T2

v

and in the same way,

é

4("),177) < (lu)Z :

Hence
é

)
L' ") < LW y) + L") < (G + e
It follows by Lemma 4.4 that %I’ﬂ < v'(7),v"(7) < |yl In particular, we have

. ] 5

\/Li <UL V2, therefore the angle Z(v',v") is not larger than 3@—)—2 or 30755.

We now use condition (b) in the definition of Ps. For definiteness, assume that
' > 1". The saddle connection ' lies at the boundary of K', therefore we have
v'(v') < (C +2)"*1' and v (7)) < (C +2)"24/U', so that
(C +2)™24/U

v'(y)
On the other hand ' intersects the boundary of K " therefore v (v') > C(C+2)"2l"
or v'[(v) > C(C + 2)n2§/1". The first of these two inequalities fails, for
) < ] < VBV () < VE(C + 27 < 2(C + 2

by Lemma 4.4, while C' > 2. Hence we have the second inequality, from which it
follows that

Z(v',y") <tan Z(v',7") €

C(C +2)m68/1" _ C(C +2)"25/l'
2 " B
1| V20'(¥')

L") = sin L") >
As a result,

! " " ! 1 ! C (C+2)n25/ll _g_ — _é—-
L0 v") > 467 7) = 40570 > (‘fz 'l) e R (ﬁ 1) ek

é
which for C' > 41/2 contradicts our earlier estimate Z(v',v") < 3(—l’_)‘—2 .

]

Corollary 4.13. If§ <2

I

Proof. Since the saddle co
there are at most 3m of th
ing an arbitrary complex
therefore there are at most
of saddle connections can |

Let K be a complex t
connection at the bounda
property: for each comples
relations 0 < d(K) < d(K
have

Lemma 4.14. If§ < 12

N3(K,T;C,6,L, 0,

< Ni(B

where L; = ak‘f/, 0<i<

Proof. We must find an e
that

P; (K,

The number of saddle cor
most N4(K,[;C,8,0,Ln;1
play the role of K is at m:
by Corollary 4.13. The |
show that, for fixed sadd!
of saddle connections that
most N (ﬁ —LL> eleme
a i+1

We now add the saddle
that it does not already lie
by Kiyi. This complex |
0 < d(Ki1) = d(K) < d
Let v be a saddle connec
viy1 are two sides of th




the set gs(K,’y;C,(s;nl,HQ) con-

srsecting saddle connections in

es satisfying property Ps such
es. Let v',v" and I',!" be the

ad K. By condition (a) in our

(C+2ma/l,
(C + 2)n15/l//’

+2mo/ 8

v+2)nlzl - (ll)2 ’

) . 0
GG
y< |y In particular, we have

8
ot larger than 3—— or 3——— e

(l’)2
%. For definiteness, assume that
indary of K', therefore we have
) that
+2)m24 /U
i)
,therefore v"' (') > C(C'+2)"21l"
0 inequalities fails, for
2l < 2(C +2)m2l”

second inequality, from which it

i OC + D

V2v'(7)
Ymel (O 8
> (e
5
te Z(v',v") < ——-

(@?

Ergodicity of billiards in polygons 423

Corollary 4.13. If6 <12, (C) and C > 4/2, then

Ns(K,v;C,8;n1,n) < 25™mF1

Proof. Since the saddle connections in §5(K,'y, C,d0;n1,n2) are pairwise disjoint,
there are at most 3m of them by Proposition 4.2. Further, the > connections bound-
ing an arbitrary complex with property P; form a subset of 5’5( ,7:CL65n1,n),
therefore there are at most 2™ various boundaries. Finally, an arbitrary collection
of saddle connections can be the boundary of at most two complexes.

Let K be a complex that is not a sa(jvdle connection and let I" be a saddle
connection at the boundary of K. Let N (L) be a function with the following
property: for each complex K ¢ K containing T at its boundary and satisfying the

relations 0 < d(K) < d(K) and Area(K) < m(C + 2)*™§ and for each L > 0 we
have

M(K,T;L) < N(L).
Lemma 4.14. If§ <%, (C) and C > 4/2, then

N3(K7F;055,L101Z;nyn1>n2;k01'"7kn)

< Ny(K,T5C,6,0,Lp;n,ny) - 28+ HN(£ 7 )
g i+1

1=0
where L; = ak"z, 0<1<n.

Proof. We must find an estimate for the number of collections Y05 - -5 Yn, K such
that

ﬁ3 (K,F, Caé,L>avz;nvnl)n2; kOa"'7kn)'

The number of saddle connections that can occur as ¥n in such a collection is at
most Ny(K,T';C, 6,0, Ln;n,n;). For v, fixed, the number of complexes that can
play the role of K is at most Ns(K,vn; C,6;n1,n3), which has the estimate 23™+!1
by Corollary 4.13. The proof is complete for n = 0. For n > 0 it remains to
show that, for fixed saddle connections 7;y1,...,7, and a complex K the set S
of saddle connections that can occur as ~; in a collection with property P; has at
most N (\/_ Ls
0 L)
We now add the saddle connection ;41 to the boundary of K as a cut (provided
that it does not already lie at the boundary of K ); we denote the resulting complex
by K1+1 This complex lies in K, Area( Z+1) = Area(K) m(C + 2)*™6, and
0 < d(Kiy1) = d(K) < d(K), therefore Ny(Kiy1,7i41; L) < N(L) for each L > 0.
Let v be a saddle connection in the set S. Then the _saddle connections 7v_and
Yi+1 are two sides of the same w-triangle lying in K and therefore in KH—I

) elements.
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Further, 0Li+1|0] < v(vi+1) < Lisa|T] and oLi|T| < v(y) < LsT for the cor-
responding direction v, where |y| < v2v(7) by Lemma 4.4. Hence

2 L
i < VEu() < VB LT = Y2 K
o i+1

<[g L; V2 L;

< v(vi41) < . i |Yit1l-

oLt |l

0 Lina

Thus, the number of elements of S is at most

- V2 L; ~ (V2 L;
N1<Ki+1,%'+1;— . ><N<—— )

o Liyy 0 Ly

We now set ﬁl(l; L) = A; L, while for d > 1 we set
Ni(d; L) = A L (logg(Ba L))™,

where Ag = (3 - 96)em)* B, = (26™)471, and rq4 = (2m)¢~1. We note that
2< Ni(d;L) < Ni(d+1;L) for L > 1, d=1,2,....
Theorem 4.15. Let K be a complex such that 0 < d(K) < 2m and let T be a

boundary saddle connection. If Area(K) < m - 5%, then

Ny(K,T;L) < Ni(d(K); L) for L>1.

Proof. We proceed by induction on d(K). If d(K) = 1, then K is an w-triangle
and Ni(K,T;L) < 2 for each L > 0; in particular, we obtain the assertion of the

theorem.
Assume now that d = d(K) > 1 and that we have proved this assertion for all
~ ~ Area(K
the complexes K with d(K) < d. We set C =6, 0 = 1/4, and 6 = __rge_xi__).
2m - 84m

. ) Area(K) )
For this choice of constants we have § < —_—Qm(C i § < 12,,(C), Ca 2 V2,
and C > 4v/2, which enables us to use all the results of this section. Further, we
set N(L) = Ni(d — 1;L) for L > 1 and N(L) = Ni(d — 1;1) for L < 1. By the
induction hypothesis we can apply Lemma 4.14 to K for this choice of N (D).

We discuss the case of d — 1 > 1 first. We start with a suitable estimate of
the quantity Ny = N4(K,T;C,$, o,L;n,n,) for L > 1/4. Writing the inequality of
Lemma 4.11 for the particular values of C, o, and 4 we obtain

Ny

N

2m(2m - 8%™) - 4 32 ) .
3m L+ +1) < m(167xm - 8™ ™ L + 35).
( (6/v/2 —1)8m 6/v2 -1 ( )

By the condition L > 1/4,

140
Ny < m{(16mm - gim—m1 4 4.35)L = m2gim—m (167r + ———_—) L
m - 84m—m

T - s et i . i

T

Further, m > 1 and n; <

which is smaller than 51.

It now follows by Lemma

for .
and 0 < k; < k(L,0,C;ny
ensures that L, > 1/4.
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a i+1

(2)¢

o Lin
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ﬁ(ﬁ.&
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1 <4(C +2)" L. Hence

o4

o i+l

Assume that we have

n-1
estimate for [] max(l,

i=0
Yo,-.+-,%n and a comp
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-oLip|T}
V2 L
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2 L1~>
\o L)
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Further, m > 1 and n; < d(K ) < 2m, therefore

167 + ——— L 167+ —
m -
which is smaller than 51. Hence
Ny < (51m? - 8tm—n1) [,
It now follows by Lemma 4.14 that
N3 = N3(K,T;C,6,L,0,(C + 2)" Lin,ny,n2; ko, .. . , k)
L;
< 51m? - gtmmm L 93mEL. H N(\/— )

g L1+1

for Li =" (C+2)™L, 0<i

N

n, 1)

and 0 < k; < k(L,0,C;n1) = log; ;,(4(C +2)™ L), since ky, < k(L,o,C;ny), which
ensures that L, > 1/4.

We now consider two cases, n > 0 and n = 0. Assume that n > 0. For >1
it+1
we also have \/—— Li =42 Li > 1, therefore
o Ly Lit1

\/_ L ) ( ( L -
4\f log, | Ba—1-4V2 )) :

( g L1+1 H—l 64 a1 L,

2 L.
On the other hand, if < 1, then £ Ls < ﬁ = 4v/2 and
i+1 g i+1 a

N(_\/_i Li ) < Ag1 - 4V2 - (logy(Ba—1 - 4v2))™

o Lipy

L.
Since 0 < ki, kiy1 < Kk(L,0,C;ny), it follows that T ' < 4(C +2)ML and
i1
4(C + 2)y™ L. Hence

T ) e iy (L 52)

=0 Lis i=0

nrg—-1

x (1og4 (Ba_y-4V2 - 4(C + 2)"15))

Assume that we have chosen kg, ..., k&, such that ]\73 # 0. We establish an

n—1 L;
estimate for [] max(l, E’l) in this case. We find some saddle connections
1=0 i

Yo,---,¥n and a complex K such that P; holds with suitable parameters.
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Let v be the direction of 7o and let dg = 0 < di < -+ < d = n1 be the corre-
sponding integers (see Proposition 4.5). Then

U(’Yi+1) dip1—d
— L (O 4+ 2)FHr R
v(7:) ( )

and since o Li41|T| < v(vit1) € Lit1|T] and o Li|T'] < v(v) < L;|T, it follows that

L’i+1 S l(C+2)d,‘+1~d,"
Li g
Hence
n—1 L,
H max(l, ZLI) <(1)o)*(C +2)" =4"-8™,
=0 i
and

2m—2 2 Lo 2 (am=2)ras

m m—2 Qni LU

<A A6V e <1og4 (Bd . 2\/_8 L))

for N3 # 0 (we use the fact that n < n; < 2m — 2). Further, by the conditions
1 -

lv0] < L|T'| and oLo|T| < |70l < Lo|['| we obtain that Lo < . L = 4L for N3 # 0.

It follows now from (1) that

(2m—2)rq-1
AT 24ma3m+1 2m 2 2m—2 2m
Ny < 51m281m23m+1 42m-2(16./2) 4L<log4(Bd 1—2\/_8 L))
51

1 (Zm 2)rg—1
= —2—6‘ ’ITL2 224mA3T1—2L (10g4 (Bd..l m 82mL))

for N3 # 0. We denote the right-hand side of the resulting inequality by D(L).

Clearly, D(L) > 0 for 0 < k(L,0,C;n;), so that N3 < D(L) for all ko, ..., ky such

that 0 < k; < k(L,o,C;n1) (and not only for the values of k; such that Ng # 0).
We now proceed to the case n = 0. Here the estimate (1) involves no factors of

V2 L

the form N
( o Lit

) and, moreover, n; = 0 and Lo < L. As a result, we obtain

Ny < 51m?2 - g4m—m . 93mHl [ < 2. 51m? - 215 L.

The quantity D(L) is the right-hand side of this inequality multiplied by

2" am—2 1 com (Fm=2)raz
S AT log4(Bd_1—27_§8 L) .

AEB&

In our case k(L,0,C;ny) =
log, (Bd

because k(L,o,C;n1) 20
then also N3 < D(L) for 0

We now assume that L
value of D(L) is independ
and then Lemma 4.7 to ob

N3(K,T;C,6,1

and

Finally, L +1 < 2L for L

X <log
< 40m® - 2

by Lemma 4.6. We note th
d—1> 1. Hence to comple
40mS - 224m . A2 Ay

The function f(z) = (4
for z > 40~1/5¢. Hence (4

5 24m 2m -2
40m? - 2 . i

for d — 1 > 1, as required.

As regards the case of
obtain the following estim

Ni(K,T; L) < 40m®
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A7) € Ly, it follows that

=4n 8™,

(2m—=2)rq_1
1 2m
vis)

Further, by the conditions
1 ~

Lo g — L =4L for N3 7‘50
o

. mS“”L)

m—2)rd_1

1 )(2m—2)m_1

sulting inequality by D(L).
D(L) for all ko, ...,k such
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In our case k(L,0,C;n1) = log,(4L), therefore
1 1 .
lo (B _ ——ssz) >1lo (-—SZL > 1
B4 d—1 2\/-2‘ B4 2\/5 )

because k(L,a,C;ny) > 0. In addition, 2°™ > 26 and A7™? > 1, so that if n = 0,
then also N3 < D(L) for 0 < ko < k(L,0,C;ny).

We now assume that L > 1. Then k(L,o,C;n;) > 0 for each n; > 0. Since the
value of D(L) is independent of ko, ..., k, and n,n;,ny, we can use Corollary 4.9
and then Lemma 4.7 to obtain

NS(K)F;C)(s:L;n>nlan2) < D(L) ’ (k(LaasC;nl) + 1)n+l
= D(L) - (logy(4-8™L) + 1)

< D(L)- (1og4 G -ssz)>2m_l

and

Ny(K,T;L) < D(L) - <10g4 G ~82mL))2m~1 - @m).

Finally, L + 1 < 2L for L > 1, therefore
2m-—1
Ni(K,T;L) <3- No(K,T;2L) < 3- D(2L) - (log,i(i g2m 2L)> (2m)?

a9l 5 oum 4om—2 1 o (2m—2)rq_
_326m 27 AT 2L 10g4<Bd41 2\/58 2L)

2m—1
X (log4 (i gzm 2L>> (2m)?

< 40m5 . 224m . AinZL(10g4(Bd—1 . 26mL))(2m—2)1‘d—1+(2m-—1)

by Lemma 4.6. We note that By_;-25™ = By and (2m—2)rq_; +(2m—1) < ry for
d—1 > 1. Hence to complete the proof of the induction step it suffices to show that
40mS - 224m . AT Ay

The function f(x) = (40z°)}/4® increases for 0 < z < 40~'/%¢ < 2 and decreases
for z > 407'/%e. Hence (40m®)!/4™ < max(40'/4, (40 - 25)1/8) < 3. Consequently,
. ; 40m® - 224m
5. 024 2m—2 _ 5. o24m _ p—2 _
40m° - 2 m.Ad—-I =40m” - 2 .Ad—l-Ad_m('Z—'m)tl—Ad
40mS . 22m

1 4m
< gy = (5 (0m) ) g < 4g

for d — 1 > 1, as required.

As regards the case of d — 1 = 1, using arguments similar to the above we can
obtain the following estimate:

1 2m—1
Ny(K,T; L) < 40m? - 224m . g2m=2 (1og4 (5 : 26mL)) for L > 1.
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Since L -26m < By, 2m — 1 < 2, and 40m® - 224™ . A?™"2 < A, (as shown above),
2 1
we have proved the induction step also in that case.

Proof of Theorem 4.1. Let ' be a flat structure that is homothetic to w with
coefficient . Then w and w' have the same saddle connections and the length of a
saddle connection with respect to w’ is A times its length with respect to w. Hence
we obtain easily that the theorem must either hold or fail for both structures, so
that it suffices to consider only the case of s = 1.

The proof that follows is very similar to that of Theorem 4.15.

For arbitrary C,48,L > 0 and integers n,n1,no, where 0 < n,ny,ne < 2m, let
N4(C,8,L;n,ny,ny) be the number of collections consisting of pairwise disjoint
saddle connections 7o, - - - , ¥» and a complex K for which there exist a direction v,
integers dy, . . ., dn, and real numbers lo,...,ln such that

(a) conditions (1)~(6) in Proposition 4.5 hold with the entire surface M regarded
as the ambient complex K;
(b) dn = ny and d(K) = na;
(c) [l < L.
By Proposition 4.5,

N(L) € Z Nj(C,8,L;n,ny,ny) for each L >0, (2)
0<n,n1,n2<2m
if § <12,,(C)and d < %. Next, given integers ko, ...,k, > 0 and a
real number o, 0 < o <1, let Né(C,é,L,o;n,nl,ng;ko, ..., kn) be the number of
collections Yo, - . -, Tn, K satisfying the additional condition
(d) oL; < v(v) < Ly, where L; = o (C + 22—l 0<i<n
Assume now that saddle connections 7o, . . . , Yn and a complex K satisfy (a)-(c).

Then v(7;) = (C+2)%1; < (C+2)™ || < (C+2)*™'L, that is, (d) holds for some
ko,...,kn > 0. By Lemma 4.4 we have v(y;) > \/LE il > &5 = % for § < 12,.(C),
and therefore L; > —\}—5 By (c) and (d),

1

1
Lo < = |yl < =L
o o
Hence
L, > L and Lo < L (3)
n = \/5 0 .
Further,
v(7:) l;

(C + 2)d|—di+l

v(¥is1)  lin

for 0 < i < n. By the inequalities 1 < l;/l;x1 < |70l/l» and condition (d) we obtain
first

Liyi _ 1 dip1—ds
g — C 2 i+1 £ ,
I ~(C+2)

and therefore

n—1
=0
Second,
L, 1
< =
Li+l = U(C
1
<=(C
a

which, in view of the conc
L,‘/Li+1 S 0'_2(0

Finally,

Ly 1o
LA QR
Li g v

for 0 < ¢ < n, and since ¢

Hence

N:;(Ca 6)L;nan1

for & < 12,,,(C), where tl
(3)-(6) hold.

Let S(C,8,0,L;n1) ¢
exists [, oL <1 < L, suc
some direction v. Let Ny

similar way to Lemma 4.

ﬁé(C,&,L,a;n,nl,n

for § < 12,.(C) and C
N(K,T;L) < N'(L) for
at the boundary such tt

d < 12,.(C) we have m (¢

min

by Theorem 4.15.
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and condition (d) we obtain
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and therefore

H ma.x( ’“) < (é)"(cw)m. 4)

Second,
Li l(c’ + Z)d —di4y 1101 I’YOl l(c’ + 2)d —digy1+n, 1701 |70i
Lin ~o a v(yn)
1 L 1 S
—C+2n11 _C+22m—2 :
RCAMEANIETCn I T ow

which, in view of the condition v(y,) > oLy, shows that

Li/Liyy <o 3(C+2)" - (C+2)*™ L)L, =072(C+2)" ok, (5)
Finally,
L, < 1 U(7n)

iia — _.l dn—d; In - 2m~—1
. S ool U(C+2) .S (C+2)

for 0 < i < n, and since o~ *% = (C + 2)>™~'L/L;, it follows that
(C + 2)2m—1L>

1
0 < ki < log,, (; (C+2)>™t.

Ly,
=log, /s (07H(C +2)*™ g7k, (6)
Hence
N3(C,8,Lin,ni,n2) < Y Ni(C,8,L,05m,m1,ma5ko, ., kn) (7)
ko, kn
for & < 12;.(C), where the sum is taken over those values of ko, ...,k, such that

(3)-(6) hold.

Let Si(C,8,0,L;n1) be the set of saddle connections for each of which there
exists !, oL < ! < L, such that the connection is (I, 4, C,n1)-insulated relative to
some direction v. Let N;(C, 6,0, L;n;) be the number of elements in this set. In a
similar way to Lemma 4.14 we can prove that

NEII(C’ J,Laa;nanlan;k(Ja fee ykn)

< NY(C,6,0,Ly;ny) - 25mHL . HN’(‘[ Li ) (8)

o Li

i=0

for § < mm(C) and C > 42, where N’ is a function satisfying the inequality

N (K, T; L) <N ’(L) for L > 0 and for each complex K with a saddle connection T’
at the boundary such that 0 < d(K) < 2m and Area(K) < m(C + 2)*™§. For
8 < 12,,(C) we have m (C + 2)4™§ < m-s?/2 < m-s?, therefore we can set

N'(L) = N, (2m - l;ma.x(l,z)) (9)
by Theorem 4.15.
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If v and ¥ are intersecting saddle connections in Sy(C,§,0, L;ny), then

L(1,7) > 5(% - 1>(—C+T§)L

for § <12, (C) and Co > V2. This inequality can be proved in the same way as
the one in Lemma 4.10. Let ¢, be the right-hand side of this inequality. Saddle
connections in S4(C, 8, 0, L; n1) with directions belonging to a fixed arc of length ¢,
are disjoint, therefore there are at most 3m of them by Proposition 4.2. Averaging
over all the arcs of length ¢, and bearing in mind that there are two opposite

directions corresponding to each saddle connection we see that

N;(C,8,0,L;ny) < 3m - max(l, 1>
Yo
™

5(%—1)(C+2)2"1L‘>

=3m- max(l, (10)
for 6 <12, (C) and Co > V2.
We now fix constants C,o, and 6. We set C = 6,0 = 1/4, and ¢ =

82

~ 2(C +2)™
since Area(M) > s?/2 = 1/2 by Lemma 3.7. Hence we can

1
4m - 84m’
Then Co > V2, C > 4v/2, moreover, § < 12, (C)
Area(M)

§ & —————5—
2m(C + 2)4m
apply inequalities (2), (7), (8), and (10). In particular, it follows from (10) that

since s = 1, and

Ny(C,8,0,L;ny) < 3m - max( 4m - 84’"‘2"’L2>

1.~ .
T6/v2 -1
<3Im- max(l, 4m - 212"‘_6"1L2)
1
72_.
We now find an estimate for ]\Nfé = Né(C, §,L,o;n,n1,n2; ko, ..., kn) under the

assumption that (3)-(6) hold. We substitute the above estimate for Ny in (8) (this
is possible in view of (3)). We obtain

=12m?-212m6m 2 for L >

n—1
]\7:; < 94m2 . glsm—6m L?L . H N/ (4\/5 LLz ) (11)

i=0 i+1

Let n > 0 and 2m — 1 > 1. By (9),

- Ll L’i i 2m -1
N’ (4\/5 ><A2m_1 - 4V2 <log4 Bom_1-4V?2 L
Lit1 Liga

L,

if L > 1 and
it+1

AT Li T2m 1
N’ (4\/5 ) < Azm_1 - 4V2 (logs(Bam—1 - 4\/5))

Liya

ot

L;

Lin
In view of (5),

if <1

L;/

We even have L;/L; 41 < 4
with the inequality 1 < 4F

gﬁ' (m L )

Liy1

L

< Ay (V2 S

L

Bearing in mind (3) and (

o= ~7) :
E)N (4\/5 L )

Ly

< ApmTi (V4
Substituting this in (11)
N} < 24m?2'®

L

4=
x I

< 96m? 2%°

Finally, L,/L = (C + 2)*

. 96
N. <
8% 9V2-8

By (6) we obtain

0 < ki < logy, (a7 (C

for 0 < 7 < n, that is, 1
estimate of N3 is indepen
N3 = N3(C,6,L;n,ny,n
96
<
2v2-8

_ 96
T 2y2-8

m2 224mA

m?2%4m 4
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de of this inequality. Saddle
g to a fixed arc of length ¢,
y Proposition 4.2. Averaging
that there are two opposite
: see that

'” 2

o)
1

g = 12/4, and 6 = W

‘>(Ci—2)4m since s = 1, and

Lemma 3.7. Hence we can

5, it follows from (10) that
A - 84m—2nl LZ)

iny LZ)

1

7
in1,n2; Ko, ..., ky) under the
e estimate for V; in (8) (this

L>

Vil ) (11)

L i 2m—~1
)
! Liyy

1—1 7 4\/5))7‘27-"_1

T

b
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L.
if —— <1

Lipa

In view of (5),

1
Li/Liy1 € —g——nv 0 Fn =245
if it o2(C +2)

We even have L;/L; ;1 < 4%~ since L;/L;;1 is an integer power of 1/0 = 4. Together
with the inequality 1 < 4%~ this shows that

n—1

- L;
I (ava )
=0 Lita

n—1
s/ T (s 2t

" =0

Bearing in mind (3) and (4) we obtain

I (e

Lia

L 5y (2m—1)rapm -
< Apnt1 (V)" 45—(4" 8"’)(’% +3m(2m - 2) + Z) -
n

Substituting this in (11) we see that

N} < 24m? 215m=06m 2 p2m—1 (16, /5n

L 5y (2m—1)ra,
x 4 gm (kn +3m2m—2) + Z) o

Ln
Ly

g 96m2 2151". (2\/§)nA2m—-1

ot D 12y )2,

Finally, L,/L = (C + 2)*™ " 1g%» = 82m~1. 4%~ and therefore

< 96
P 2v2:8
By (6) we obtain

m2 224mA§$:{L2 i 4k,. (kn + 6m2)(2m-1)7‘2m-1 .

1., 1
0 < ki <logy /o (071(C +2)>™ " o™*=) = log, (5 g2m . 4’%) = kn +3m — >

for 0 < 1 < m, that is, the k; can take at most k, + 3m different values. Our
estimate of NV} is independent of ko, ..., kn,_1, therefore

Né = NZ;(Cv 67L;nanlyn2)

96 - — - p 2m—1)r 7
<s/ms™ 224mA%z_iL2'kZ:0(4 b (kn + 6m2) 2=l ram e (k4 3m)")
96 >

< m2 224mA?m—1 L2 . 4—k k+ 6m2 2m—-1rgm-1+(2m—1)
2\/‘2‘ .8 2m—1 ;}( ( ) )




432 Ya. B. Vorobets

by (7). For 2m — 1 > 1 we have (2m — 1) rom—1 + (2m — 1) < rgp = (2m)>™ 1.
Hence

96 . = 2m—1
Ny < —=—m?22mAZm=t 12N (475 (k + 6m?) ) . (12)
2v2-8 " k:O( )

We now consider the case of n > 0 and 2m — 1 = 1. In this case there is no
logarithmic factor in the expression for N', but our arguments can be the same as
above in all other respects. Our final result is as follows:

96 — = _ e
5 < Q—mm2224mA§m_}L2.Z(4 k(k + 3m)?m1).
k=0

The estimate (12) is an obvious consequence of this inequality.

As for n = 0, there are no factors of the form N’ (4\/5 Li
i+1

) in (11) in that

case and we immediately obtain
Nj < 24m? - 21m6™ . L3 = 24m? - 2157 (Lo /L) L?.

However, Lo/L = (C+2)?m~1gke = L 26m.47ko g0 that Ni < B m?.22Tm [2.472k
and

NI < 24 2 227771L2 < 4—2](:0
TR >
ko=0
by (7). Since
24 96
_23m < 2m—1
82 2v/2-877m0

while 472%0 < 47%0 and kg + 6m? > 1 for kg > 0, the estimate (12) remains valid
in this case.

Bearing in mind that (12) is independent of the triple of parameters n,n;,ns,
by (2) we obtain

o0
N(L) € % md 9¥m ATl 2.y (4"°(k + 6m2)@m)* ) . (13)
k=0

Next we consider two cases: m > 1 and m = 1. Assume that m > 1. In our proof
of Theorem 4.15 we established that 40m® < 34™. Since 26 < 40, it follows that

96 ,.5924m 6\y4m 2v2
AR RS (3-2%)¥" Further,
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so that
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We now find an estimate
k + 6m2 < 12m?, while k +
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0

<Y aH
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x
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0

[

< =(12m?

3

We denote (2m)?™~! by p
decreases for x > p. Hence
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S et

k=0
which is less than p? for 1

S (a* k6

oo
k=0

< G0zt

= (2m)(2m

< (2m)®m
As a result,

N(L) < (32

as required.
For m = 1 we obtain

N(L) <

by inequality (13). The
equal to To = 4/3, L1
0 047 (k +6)% is equ

[

N(L) < 3

which completes the prc
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(2m — 1) < ropm = (2m)*™~1L ! We now find an estimate of the sum of this series. For 0 < k < 6m? we have
k + 6m2 < 12m?2, while k + 6m? < 2k for k > 6m?; hence

o0
(k+6m3) @) (12) S (47 (b + 6m?) e
k=0
00
= 1. In this case there is no < Z4~’°((12m2)(2m)2""1 + (2k)(2m)2"‘_1)
arguments can be the same as k=0
lows: 4 0o
(12m2)<2m>2"‘“ +2emT 3 (e—k : k(‘zm)z*"'l).

. k=0
Kk + 3m)*™1).
We denote (2m)?™~! by p. The function g(z) = e~ *x? increases for 0 < z < p and
decreases for ¢ > p. Hence

inequality.
2 Lipa in (11) in that Ze / e *zPdz + e PpP = pl + e PpP,
k=0
5 (Lo /L)L which is less than p? for p > 1. Thus,
> 2m—1
hat ]\[3 m 227m LZ 4- 2ko 2(4—’0 (k +6m2)(2m) )
k=0
47 < %(12m2)‘2m’2“” 1 2em T (gypme1) T
(2m)@™°" 4 3 (2my*m =t e (2m)*m
= m - — .
3 (2m)2m—2 m
<@EMEY" for m> 1.
he estimate (12) remains valid As a result,
'triple of parameters n,n1,ng, N(L) < (3-29)¢ (2m)* - (2m) em)*™ 2 o (400m)(2m)2m - L?,
as required.
(k + 6m2)(2m)2""1). (13) For m = 1 we obtain

96
N(L 2%4.(3.292.L2.Y 4%k 4 6)?
(L) < PN ( ) ‘;) )

by inequality (13). The sums Y50, 47%, Y ro,(47% - k), and 377, (47% - k?) are
equal to ¥y = 4/3, £; = 4/9, and ¥, = 20/27, respectively, therefore the sum
S 047k (k +6)? is equal to Xy + 125, + 36%, = 52Z. Hence

iume that m > 1. In our proof
Since f < 40, it follows that

(329 form > 1,

96 .
N(L) € — 3.26)2. 52 L2 3.27)8. L2,
(1)< 5 2 (32 <(3-2)
5 - 2m—1
+6m?)*™) ) which completes the proof in this case.
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