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§1. Introduction

In various problems in geometry and dynamics there naturally appears a cer-
tain geometric object on a two-dimensional surface which, depending on the con-
text, is called a planar structure, a quadratic differential, or a measured foliation.

This work was carried out with the partial financial support of the International Science
Foundation (grant no. M1E300).




oo e —r———

Y

780 Ya. B. Vorobets

Measured foliations appear in the study of diffeomorphisms and foliations on sur-
faces, quadratic differentials are one of the objects of Teichmiiller theory, and pla-
nar structures are closely connected with billiards in rational polygons and interval
exchange transformations.

In the present article we will discuss planar structures. A planar structure on
a two-dimensional compact orientable surface is a metric of zero curvature having
finitely many singular points, at each of which it has a conical singularity with angle
that is a multiple of 2r. The progress in the study of such structures during the
last 10-15 years is connected mainly with the names of W. Veech and H. Masur and
has been achieved by an extensive use of methods from Teichmiiller theory. Here,
the planar structures themselves occur as a convenient geometric representation for
quadratic differentials.

The present paper is devoted to a remarkable property of planar structures first
noted by Veech [1]. We consider the simplest example of a planar structure: the
torus R?/Z?. In this case the trajectories of the geodesic flow behave particularly
simply: each of them is either periodic or uniformly distributed. It turns out
that there are many examples of more complicated planar structures having this
property (which will be called the Veech alternative in the sequel). More precisely,
such are the planar structures having a rich group of affine symmetries. A large
number of examples arise in the study of billiard flows in rational polygons, and
in this case the Veech alternative provides detailed information on the dynamical
properties of the corresponding Hlows.

The author has made an attempt to circumvent the use of methods from
Teichmiiller theory, making planar structures the subject of independent inves-
tigation. In this way a new proof has been obtained of Veech’s theorem [1], estab-
lishing the above-mentioned alternative. Furthermore, a new proof of a lemma of
Masur [10], Theorem 1.1, has been obtained. This lemma (and the weaker assertion
from [4] known before it) plays an important role in practically all investigations
in this field. Finally, by developing a geometric approach to the study of planar
structures it has become possible to obtain numerous results and examples related
to the Veech alternative.

The structure of the paper is as follows. In §2 we give detailed preliminary
information related to planar structures, billiards in rational polygons and interval
exchange transformations, and also establish a link between these objects. In §3
we give a new proof of Veech’s theorem and a new proof of Masur’s lemma. We
also consider the problem of the distribution of the periodic trajectories of a planar
structure. In §4 we give numerous examples of Veech’s theorem, both those found
by Veech himself and new ones. In §5 we consider covers of planar structures. The
results obtained here substantially extend the list of examples of Veech’s theorem.
Finally, in §6 we derive certain geometric properties of planar structures. A detailed
study of these leads to a generalization of Veech’s theorem.

The idea of removing from the study of dynamical properties of billiards in
rational polygons the non-constructivity connected with the use of Teichmiiller
theory is due to A. M. Stépin. The author thanks him for his universal support.
The author also thanks D. V. Anosov for stimulating discussions.

The results of this paper have been announced in [18].
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§2. Definitions and preliminary information

2.1. Planar structures.

Definition 2.1. Let M be a compact, connected, orientable surface. A planar
structure on M is an atlas w, consisting of charts of the form (U, f), where U is a
domain on M and f is a homeomorphism from U to a domain in R?, such that the
following conditions hold:

(1) the domains U cover the whole surface M except for finitely many points
Zy,...,Zk, called singular;

(ii) all coordinate changing functions are shifts in R?;

(iii) the atlas w is maximal with respect to (i) and (ii);

(iv) for each singular point z; there are a punctured neighbourhood U;, not
containing other singular points, and a map f; from this neighbourhood
to a punctured neighbourhood V of a point in R? that is a shift in the
local coordinates from w and is such that each point in V has exactly m;
preimages. This number m; is called the multiplicity of the singular point ;.

A singular point of multiplicity 1 is called removable (one can then find a planar
structure @ D w in which this point is non-singular).

Using the charts of the atlas w we can lift the Euclidean metric of R? to a
Riemannian metric of zero curvature on M \ {z1,...,zx}. At a singular point z;
this metric has a conical singularity with angle 27m;, that is, a neighbourhood of
this point is isometric to a neighbourhood of the origin in R? with a metric that has
the form ds? = dr? + (m; rd#)? in polar coordinates (r,8). By (ii), the holonomy
group of this metric is trivial. The area element p corresponding to this metric is
called the Lebesgue measure on M.

The metric on M induces the geodesic flow {T*}. We restrict our consideration of
this flow to a level surface of the energy corresponding to motion with unit velocity.
Then the phase space of the flow is a direct product, ® = M x S!. Here, S! is the
circle of unit directions in R? and can be identified with the space of unit tangent
vectors at an arbitrary non-singular point. The geodesic flow is well defined on
an element of @ if the trajectory corresponding to the element (a geodesic curve)
does not pass through a singular point. Such elements form a set of full measure
g x A (with A the Lebesgue measure on S'). The geodesic flow preserves the
measure f X A.

The phase space ® fibers into invariant surfaces M x {7}, which are homeomor-
phic to M. Thus, the restriction of the geodesic flow to an invariant surface can be
viewed as a flow on M: the flow with unit velocity in the direction ¥. This flow is
defined on a subset of M (depending on ) of full Lebesgue measure and preserves
this measure.

Definition 2.2. A flow on M in the direction ¥ is called strongly ergodic if the
Lebesgue measure is the unique (up to scalar multiples) finite Borel measure on M
that is invariant under the flow.

In the present case, strong ergodicity is also known as ‘unique ergodicity’.
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It has been shown by Kerckhoff, Masur and Smillie [5] that for almost all T € S?!
the flow in the direction ¥ is strongly ergodic. In particular, for the geodesic flow
the decomposition into invariant surfaces is also a decomposition into ergodic com-
ponents (see {11]).

We conclude this subsection by noting that in the study of quadratic differentials
there appear planar structures that have a much more complicated form than the
ones defined above (see [1], [5]). In fact, for a chart of the atlas w one allows
coordinate transformations of the form ¥ — 0+ Ty. In this connection, the planar
structures in the sense of the above definition are called orientable.

The metric on M determined by a non-orientable planar structure has a non-
trivial holonomy group. As a result, the geodesic flow on M can, for a certain
clement. ¥, only be locally defined; globally it is defined as the (non-orientable)
geodesic foliation. The condition of invariance of the Lebesgue measure under the
flow is replaced by the condition that it be transversally invariant with respect to
the foliation.

A surface with a non-orientable planar structure can be two-sheetedly covered
by a surface with an orientable planar structure in a natural manner. The majority
of results given below for planar structures can be transferred to the non-orientable
case using this cover. Moreover, in the study of billiards in rational polygons only
orientable planar structures arise. These are the subject of the next subsection.

2.2. Billiards in rational polygons. Let () be a polygon in the Euclidean
plane R?, not necessarily convex or simply-connected. A billiard in Q is a dynam-
ical system generated by a frictionless motion of a point-ball inside ) with elastic
reflections in the boundary Q. The velocity of the ball is taken to be equal to one.
The motion is not restricted in time, provided that the ball does not hit a vertex
of the polygon. In the opposite case the motion is defined up to the time of hitting
the vertex. The phase space ®(()) of this dynamical system can be obtained from
the direct product @ x S* (where S is the circle of unit directions) by identifying
pairs of the form (¢,7) and (¢,7'), where q is a point on a side of Q and 7,7’ € S!
are vectors lying symietrically with respect to this side. ®(Q) inherits from Q x S!
the measure p x A (with j¢ the Lebesgue measure on () and A the Lebesgue measure
on S'). The billiard low {77} is defined for all # in a set of full measure g x A; it
also preserves the latter measure.

Let a be a side of @), 7, the planar symmetry with respect to this side, and r, the
linear part of the operator r,. Further, let R be the subgroup of O(2) generated
by the operators r,,.

Definition 2.3. The polygon () is called rational if R is a finite group. For simply-
connected () this condition is equivalent to all angles being commensurable with 7.

A construction of Zemlyakov and Katok [12] reduces a billiard in a rational
polygon to the geodesic flow on a certain surface with a planar structure. A version
of this construction is given below.

So, let (@ be a rational polygon. We set M = @ x R and introduce on M the
direct product topology (on R we take the discrete topology). We say that two
elements (q;,7;) and (g,,7) in M are equivalent if they are equal, or if q; = ¢
is a point on a side a of @) and 7'{17'2 =71, orif ¢ = ¢ is a vertex of @ from
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which sides @ and b issue and rl'lrz belongs to the subgroup of R generated by
rq and ry. Let M be the quotient space of M with respect to this equivalence
relation, endowed with the quotient topology. It can be readily seen that M is a
compact orientable surface, obtained by ‘gluing’ |R| copies of . The polygon @
naturally embeds into M, as @ x {id}. The collection of charts {(U,, f,)}rer, with
U, = (intQ) x {r} and f, the map from U, into R? defined by f,.(q,7) = r(q),
can be extended to a planar structure w on M in a natural manner. The singular
points of this structure correspond to the vertices of Q. In fact, let z be a vertex of
() with interior angle mm/n, where m/n is a fraction in its lowest terms. For each
r € R the neighbourhood of (z,r) € M consists of 2n copies of @ glued together,
and at this point w has a conical singularity with angle = 2n = 27m. Thus, z
gives rise to |R|/(2n) singular points of multiplicity m. "

An arbitrary trajectory of the geodesic flow on M becomes a billiard flow under
the natural projection of M onto Q. Conversely, each billiard trajectory in @ ‘can
be straightened’ to a trajectory of the geodesic flow on M.

The group R acts on M (7(q,r) := (¢,7r)) and on the circle S!, so it acts also
on the phase space ® = M x S! of the geodesic flow on M. This action commutes
with the geodesic flow {T*}, so there is a well-defined quotient flow {T}/R on the
quotient space ®/R. We give two representations of this quotient flow.

First, the domain D; = int Q@ x S! C @ is a fundamental domain for the action
of R on ®. Also, the points on the boundary dD; which are identified under the
action of R are precisely the points of @ x S! that are identified when constructing
the phase space of the billiard in . Moreover, the billiard flow {TC’?} and the
geodesic flow {T"} act identically on the elements of D, up to the time of hitting
the boundary dD;. Consequently, the quotient flow {T%}/R is isomorphic to the
billiard flow in Q.

Further, let J be an arc of the circle S! that is a fundamental domain for the
action of R on S'. The end-points j; and j» of J are fixed points for certain
transformations r{ and r» in R (r, and ry are reflections; they generate R). Then
D, = M x J is a fundamental domain for the action of R on ¢. The boundary
AD, consists of two components, M x {j;} and M x {j»}. Under the action of R,
boundary points of the form (z,j,) and (r(x),jn), ¢ € M, n = 1,2, are identified.
This implies that the phase space of the quotient flow (or billiard) can be stratified
into invariant surfaces all except two of which are isomorphic to invariant surfaces
of the geodesic flow, while the two boundary surfaces can be two-sheetedly covered
by such surfaces.

2.3. Interval exchange transformations.

Definition 2.4. Suppose we are given an interval I =[a,b] on the real number
axis and points aq,....a,, in it with ¢ < a; < -+ < am < b. An interval exchange
transformation is a bijective transformation T of I\ {a,a1,....am, b} into I that is
a shift on each of the intervals (a,a;), (a;,a2), ..., (@am,b).

Sometimes an interval exchange transformation 7' is defined on some of the points
a,ai,...,am,bin such a way that it is left or right continuous at the corresponding
points and such that its bijectivity is not violated.
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If T is an interval exchange transformation, then all its powers T™ n > 1, and
its inverse 7! are also interval exchange transformations. For all z € | except for
countably many of them, T is defined for any n € Z. For an arbitrary interval
exchange transformation T', we let C(T') be the set of points z € I such that T™z
and T™*x are not defined for some n; > 0, ny < 0. Clearly, C(T) is a finite set.

Theorem 2.1 [15]. From the intervals into which I is partitioned by the points of
C(T) we can, in a unique manner, form non-intersecting T-invariant sets
Ky,...,Ks, with I \ C(T) as union, such that for each i, 1 < i < s, either K;
consists of intervals of the same length that are cyclically permuted by T or the
restriction of T to K; is minimal, that is, the set {T"x},>0 is everywhere dense in
K; for any x € K; for which T"x is defined for all n > 0.

In the first situation we call K; a periodic component of T; in the second situation
we call it a mminimal component. The interval exchange transformation T is said to
be minimal if it has a single component which is also minimal. Theorem 2.1 implies
the following sufficient condition for T to be minimal.

Theorem 2.2 [14]. If C(T) = @, then T is either the identity or minimal.

Ergodic properties of interval exchange transformations are described in the
following theorem.

Theorem 2.3 [14]. Any aperiodic (that is, not having periodic components) inter-
val exchange transformation has only finitely many ergodic invariant normalized
Borel measures.

The relation between interval exchange transformations and planar structures is
described in the following two constructions.

Let M be a surface with a planar structure w, and let 7 be some direction. We
consider an arbitrary geodesic interval I perpendicular to ¥ (I may contain interior
singular points and, moreover, its beginning and end may coincide). Let T be the
first return map. It induces on I a flow in the direction . The map T is defined
at x € I if the trajectory emitted from z in the direction 7 intersects I at a certain
non-singular point y; in that case, Tz = y.

Proposition 2.4. The map T is an interval ezchange transformation. Moreover,
the number of intervals that are exchanged is bounded above by a constant depending
on the planar structure only. Any trajectory in the direction T and emitted from a
point x € I returns to I or hits a singular point in a time span bounded above by a
constant that is independent of x.

Proof. Let x,,...,x, be the points in I such that the trajectory emitted from
x; in the direction ¥ hits a singular point and does not return to I. Clearly, the
number of such points does not increase the sum of the multiplicities of all singular
points of the planar structure. We add to them the (at most two) points that
are mapped by T to the end-points of I. Let .J be one of the subintervals into
which the @y, ...,z,, partition I. Poincaré’s return theorem easily implies that the
trajectories emitted from points of J in the direction ¥ return to I and, moreover,
do not increase S/j, where S is the area of the surface M and j is the length of J.

Planar structure

Moreover, it is obvious
has been proved compls

Definition 2.5. A sa
Joining two singular po

The phrase ‘saddle
planar structure is a sa
connections parallel to
same role as the points
The similar object for
two vertices) is called a

Proposition 2.5. The
a special flow under an
constant on each of the

Proof. Let I be a geode
of all trajectories emitt
proof of Proposition 2.
saddle connections and
v leaves D(I) invariant,
exchange transformatio
exchanged interval. In
find intervals Iy, ..., I,
D(Iy),...,D(I,) are n
points and saddle conne

We first note that an
in a pencil (or band) of ¢
by saddle connections.
is finite (it is at most th
saddle connection boun
trajectories in the direc
Clearly, D; = D(I;) for
of these pencils (includ;
we choose an interval I,
do not contain singular
complement them we ct
The domains thus obtai
each saddle connection
arbitrarily many of ther
required.

Propositions 2.4 and
of Theorems 2.1, 2.2 an

Theorem 2.6. Let Dy,
after deleting singular p
D; is invariant under t/




n all its powers 7™, n > 1, and
1ations. For all x € I except for
€ Z. For an arbitrary interval
of points z € I such that 7™ ¢
Clearly, C(T) is a finite set.

1 15 partitioned by the points of
n-intersecting T-invariant sets
reachi, 1 < i < s, either K;
syclically permuted by T or the

7 .. . ,
[z}nso is everywhere dense in
n 2> 0.

ent of T'; in the second situation
nge transformation 7 is said to
dminimal. Theorem 2.1 implies
al.

the identity or minimal.

rmations are described in the

ing periodic components) inter-
Y ergodic invariant normalized

:ations and planar structures is

ud let 7 be some direction. We
ar to ¥ (I may contain interior
1 may coincide). Let T be the
‘tion 7. The map 7 is defined
‘tion ¥ intersects I at a certain

e transformation. Moreover,
"above by a constant depending
lirection U and emitted from a
time span bounded above by a

the trajectory emitted from
not return to /. Clearly, the
1e multiplicities of all singular
1e (at most two) points that
» one of the subintervals into
1eorem easily implies that the
U return to I and, moreover,
e M and j is the length of .J.

Planar structures and billiards in rational polygons: the Veech alternative 785

Moreover, it is obvious that the restriction of T to J is a shift. Thus, the assertion
has been proved completely.

Definition 2.5. A saddle connection of a planar structure is a geodesic interval
Joining two singular points and not having singular points in its interior.

The phrase ‘saddle connection’ is related to the fact that a singular point of a
planar structure is a saddle point for the flow in a definite direction on M. Saddle
connections parallel to a direction ¥ play, for the flow on M in this direction, the
same role as the points of C'(T') play for the interval exchange transformation 7.
The similar object for billiards in rational polygons (a billiard trajectory joining
two vertices) is called a generalized diagonal.

Proposition 2.5. The flow in a direction T on a surface M can be represented as
a special flow under an interval exchange transformation with return time that is
constant on each of the exchange intervals.

Proof. Let I be a geodesic interval on M perpendicular to 7. Let D(I) be the union
of all trajectories emitted from interior points of I in the direction T or —7. The
proof of Proposition 2.4 implies that D(I) is a domain on M. It is bounded by
saddle connections and periodic trajectories parallel to . The flow in the direction
¥ leaves D(I) invariant, and its restriction to D(I) is a special flow over an interval
exchange transformation (on I); moreover, the return time is constant on each
exchanged interval. In view of the above, to prove the assertion it suffices to
find intervals I, ..., I,,, perpendicular to ¥, such that the corresponding domains
D(I),...,D(I) are non-intersecting and have as union all of M (up to singular
points and saddle connections parallel to 7).

We first note that an arbitrary periodic trajectory in the direction 7 is contained
in a pencil (or band) of periodic trajectories of a single period; this pencil is bounded
by saddle connections. Since the number of saddle connections in the direction T
is finite (it is at most the sum of the multiplicities of the singular points) and each
saddle connection bounds at most two pencils, the number of pencils of periodic
trajectories in the direction ¥ is finite as well. Let D;,...,D,, be these pencils.
Clearly, D; = D(I;) for certain intervals I, ..., I,, perpendicular to 7. If the union
of these pencils (including their boundaries) is not M, then to complement them
we choose an interval I,,,+; perpendicular to 7. The domains D(I1),...,D(Inmy1)
do not contain singular points. If the union of their closures is still not M, to
complement them we choose another interval I,,, ., perpendicular to 7, and so on.
The domains thus obtained are bounded by saddle connections parallel to ¥ (and
each saddle connection bounds at most two domains), therefore there cannot be
arbitrarily many of them. Consequently, M = U1<i<m+n D(I;) for some n > 0, as
required.

Propositions 2.4 and 2.5 (and their proofs) make it possible to obtain analogues
of Theorems 2.1, 2.2 and 2.3 for flows.

Theorem 2.6. Let Dy, ..., D,, be the domains into which the surface M partitions
after deleting singular points and saddle connections parallel to T € S'. Then each
D; is invariant under the flow on M in the direction T and either it is a pencil of
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periodic trajectories parallel to U or the restriction of the flow to D; is minimal.
The number of domains is bounded by a constant not depending on the direction.

Theorem 2.7. If a planar structure w does not allow saddle connections parallel to
a direction U, then either the flow on M in this direction is minimal or w does not
have singular points and the whole surface M consists of a single pencil of periodic
trajectories parallel to v.

Theorem 2.8. If the flow on a surface M in a direction T is aperiodic, then there
are only finitely many normalized Borel measures on M that are invariant and
erqodic wnth respect to this flow.

We will now describe a second construction relating interval exchange transfor-
mations and planar structures. Let / = [a,b] be an interval on the real number
axis, T an interval exchange transformation on I, ag = a, a; ,--,0n = b the points
of I at which T is not defined, and by = a,by,....b,, = b the points at which 77!
is not defined. We put M = I x [0,1]. By S we denote the subset of M consisting
of the points (a;,1), 1 <@ < n, and (b;,0), 1 <i < m. We identify intervals on the
boundary of M: we identify the points (a,t) and (b,t), t € (0,1), and we identify
(r,1) and (T'z,0) for = € I with T'r defined. Further, we identify the points of S
that are identical end-points of identified intervals (that is, simultaneously upper
or lower for vertical intervals, left or right for horizontal intervals). We denote by
M the quotient space of M corresponding to the above identification. Then M
Is a compact orientable surface. The chart (U,id) with U = (a,b) x (0,1) can be
completed in a natural manner to a planar structure w on M. The singular points
of w correspond to the points of S. By construction, the flow on M in the vertical
direction is a special flow over T' with return time equal to 1. In particular, this
implies that the above-described construction cannot yield every planar structure.

There are other ways of associating a planar structure with an interval exchange
transformation (see, for example, [4], §3).

2.4. Elementary planar structures.

Theorem 2.9. Let w be a planar structure on a surface M, let m,, ..., my be the
multiplicities of its singular points, and let x be the Euler characteristic of M. Then

ke

-x = Z(mi - 1).

i=1

Proof. Both parts of this formula do not change when singular points are added or
deleted, so we may assume that w has singular points.

Lemma 2.10 [5]. If w has singular points, then every set of pairwise non-inter-
secting (that is, without common interior points) saddle connections can be com-
plemented to a triangulation of M whose vertices are singular points, whose edges
are saddle connections, and whose faces are triangles not containing singular points
in their interior (w-triangles, see §6).
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Let v, e, f be the numbers of vertices, edges and faces of an arbitrary triangu-
lation of M such as described in Lemma 2.10. Clearly, v = k, 3f = 2e, so Euler’s
formula x = v — e+ f implies that —x = f/2 — k. The sum of all angles of all faces
in the triangulation is equal to wf. On the other hand, it is equal to the sum of the
full angles at the singular points of w, that is, Zle 2mm;. Hence: f/2 = Ele m;

and —x = f/2—k = Zle(mi — 1), as required.

In particular, the proof of the theorem implies that there do not exist planar
structures on the sphere. Planar structures on a torus can have removable singu-
larities only. On the other hand, a planar structure on a surface of genus ¢ > 1
must have at least one non-removable singularity.

Examples of planar structures on a torus are well known. Let 7, 7> be linearly
independent vectors in R?. By Ty, 3, we denote the quotient space of the group
R? by the subgroup Zv, @ ZT,. Then T, 3, is a torus, the canonical projection
w: R* — T4, 5, is a local homeomorphism, and the continuous maps from domains
in Ty, 7, Into R? that are right inverse to 7 define on Tz, %, a planar structure
without singular points. This structure is called a planar torus. It will turn out
that every planar structure on a torus can be obtained in this manner.

Definition 2.6. Let (M;,w;) and (M»,ws) be surfaces with planar structures.
A homeomorphism f: M; — M- is called an isomorphism of planar structures w;
and wy if it maps the singular points of w; to the singular points of w, and is a shift
in the local coordinates of w; and ws.

Proposition 2.11. An arbitrary planar structure on a torus is isomorphic to a
planar torus to which are added finitely many removable singular points.

Proof. By Theorem 2.9 it suffices to prove that a planar structure w without singular
points on a torus M is isomorphic to a planar torus. We will first show that w has
a periodic trajectory. Let A € M and let I be a geodesic interval starting at
A in an arbitrary direction #;. The trajectory emitted from A in a direction @,
perpendicular to u; intersects I at a point A’. We denote by s, s, the distances
to be travelled along I and along the trajectory, respectively, from A to A’. As
can be readily seen, the trajectory emitted from A in a direction €, parallel to
—$17 + s2uy is periodic. By Theorem 2.7, the whole surface M is a single pencil
of periodic trajectories in the direction €;, having the same length /. We draw the
geodesic interval J in a direction €, perpendicular to & whose length is the width
wy of the pencil of periodic trajectories in the direction €. The end-points 4 and
A" of this interval belong to the same trajectory of the pencil; all other trajectories
intersect J just once. Let Iy be the distance from A” to A when moving along the
direction €;. Then the trajectories parallel to Ty = wiey + ls€; form a pencil of
periodic trajectories of length |T2|. The trajectories from the pencils parallel to &;
and 7, intersect one another just once. This implies that the planar structure w is
1somorphic to the planar torus Ty, z, 5,-

It is well known that the flows on Ty, 3, in directions parallel to vectors in
Zv| &b Zv, are periodic, while the flows in all other directions are strongly ergodic
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(see, for example, [11]). Comparing this with Theorems 2.6 and 2.8, we conclude
that this behaviour is the simplest kind for the geodesic flow on a surface with a
planar structure.

Definition 2.7. A planar structure w on a surface M is said to be elementaryif the
flow on M in an arbitrary direction is either strongly ergodic or has only periodic
components. (Here, parallel periodic trajectories from distinct pencils can have
incommensurate lengths, that is, the flow in such a direction cannot, in general, be
periodic.)

Each trajectory of the geodesic low on M corresponding to an elementary planar
structure either hits a singular point, or is periodic, or is uniformly distributed
with respect to the Lebesgue measure on M. Similarly, if the planar structure
corresponding to a rational polygon @ is elementary, then every billiard trajectory
in @ not hitting a vertex is either periodic or uniformly distributed inside Q.

Results from [9] imply that, in contrast to planar structures on a torus (which
are all elementary), elementary planar structures on surfaces of genus g > 1 are
rare: for a typical (see [9]) planar structure the set of directions whose flows are
minimal but not strongly ergodic (or even non-ergodic with respect to the Lebesgue
measure) has positive Hausdorff dimension. On the other hand, for an arbitrary
planar structure, the flows in almost all directions are strongly ergodic (see §2.1).
Moreover, there are directions whose flows have a periodic component (according
to Masur [6], such directions densely fill S'). An elementary proof of the existence
of periodic trajectories for planar structures corresponding to rational polygons is
due to Stépin (see [13]).

§3. The Veech alternative

In this section we will prove Veech’s theorem [1], which gives a sufficient condition
for a planar structure to be elementary. Basically, the proof follows the original
lines proposed by Veech, but some individual steps are made simpler. Moreover,
we will show that Masur’s lemma (Lemma 3.5), the most important ingredient of
the proof, follows from a theorem of Veech on interval exchange transformations.

3.1. The stabilizer of a planar structure. Let w be a planar structure on
a surface M, and L a saddle connection of it. We can find a chart (U, f) in the
atlas of w such that U contains L (without end-points). Then f maps L to an
interval in R?. We orient this interval in the two possible ways, thus obtaining
two oppositely pointing vectors, each of which we call a development of L. Clearly,
a development of L is well defined, that is, does not depend on the choice of the
chart (U, f).

We denote by SC(w) the sequence whose terms are the developments of all saddle
connections of w. If a vector ¥ € R? is a development of several saddle connections,
it occurs in SC(w) the corresponding number of times. The sequence SC(w) is well
defined up to the order of its terms.

Proposition 3.1. Suppose that w has at least one singular point. Then the direc-
tions of the vectors in SC(w) are everywhere dense on the unit circle. Simultane-
ously, the sequence SC(w) does not have limit points.
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Proof. For an arbitrary v € S' and £ > 0 we have to prove that SC(w) contains a
vector making with ¥ an angle less than €. Let A be a singular point of the planar
structure, and let AA’ be a geodesic interval of length s > 0 perpendicular to 7.
We draw the trajectory L from A in the direction v. If it is a saddle connection
there is nothing to prove. Otherwise L intersects AA’ infinitely many times. Let
A, be the point of nth intersection, and let [,,, s, be the distances from A to
A’ measured along L and along the interval, respectively. We denote by ©; the
direction forming an angle é (0 < § < 7/2) with 7 and an obtuse angle with the
direction of AA’. For small 4, the trajectory Ls emitted from A in the direction T;
intersects AA’ after a time [,/ cosd at the point Bs lying at a distance s, — [, tané
from A. This situation persists for increasing § until either Ls suddenly becomes
larger than I,/ cosd or Bs merges with A (for § = arctan(s,/l,). In any case we
obtain a saddle connection forming with ¥ an angle not exceeding arctan(s,/l,,).
Since s, < 5 and lim, 0 [ = 400, we find that arctan(s,/l,,) < e for n large, as
required.

We will now prove that SC(w) does not have limit points. Since the number
of saddle connections with identical developments does not exceed the sum of the
multiplicities of the singular points of w, it suffices to prove that SC(w) does not have
accumulation points. Each singular point has a neighbourhood not containing other
singular points, so the length of an arbitrary element in SC(w) is at least some e > 0.
Let ¥ € R%, 7 # 0. From all singular points we draw all possible geodesic intervals
in the direction 7 of length |7| (the intervals may have interior singular points). The
number of such intervals is finite (and depends on 7). Compactness considerations
imply the existence of a § > 0 such that the trajectory emitted from an arbitrary
point of any such interval in a direction perpendicular to ¥ hits a singular point not
before time . Diminishing 4, if necessary, we may also assert that the punctured
d-neighbourhoods of the end-points of the drawn intervals do not contain singular
points. As can be readily seen, the punctured neighbourhood of the vector ¥ does
not contain members of SC(w). Since T is arbitrary, the assertion has been proved.

The above assertion implies, in particular, the existence of a shortest saddle
connection. We denote its length by m(w).

If w = {{Uq, fa)}aca is a planar structure on a surface M and a is a linear
invertible operator in R?, then the atlas {(Ua, a0 fo)}aca is also a planar structure
on M; we denote it by aw. The planar structures w and aw have the same singular
points with the same multiplicities, and also the same saddle connections. If 7 is
a development of a saddle connection of w, then a? is a development of the same
saddle connection with respect to aw. In particular, SC(aw) = a(SC(w)).

Proposition 3.2. The function d: GL(2,R) — R, d(a) = m(aw), is continuous.
Its restriction to the subgroup SL(2,R) is bounded.

Proof. Let a,b € GL(2,R) and let ¥ be a development of the shortest saddle con-
nection of aw. Then (ba=')o € SC(bw), whence

m(bw) < |(ba™)7] < llba™!|| - 3] = [Iba”™! || - m(aw),
where || - || is the Euclidean operator norm. Interchanging the roles of @ and b in
this inequality, we obtain a second inequality:

lab™ |7 - m(aw) < m(bw) < ||ba™Y|| - m(aw).
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As b — a, the quantities |lab~!|| and [[ba™!|| tend to 1, therefore m(bw) tends
to m{aw), that is, d is a continuous function.

For any a € SL(2,R) the planar structures aw and w give the same Lebesgue
measure on the surface. Consequently, we will have proved that d is bounded on
SL(2,R) if we can prove that m(w) < V25, where S is the area of the surface with
planar structure w. Let A be a singular point of w, and ¥ an arbitrary direction.
Starting at A we draw the geodesic interval I of length { = v/S in the direction .
If I hits a singular point, there is nothing to prove. If not, we draw from each point
of the interval the trajectory in a direction @ perpendicular to ©. After a time ¢
not exceeding S/I = /S, some such trajectory intersects I again. If there is still no
trajectory that has hit a singular point, then at time ¢ either some trajectory hits
A or I intersects the trajectory emitted from A. Thus, if we draw from the points
of I the trajectories in the directions @ and —, then at some time not exceeding ¢
some such trajectory hits a singular point B. Joining A and B we obtain a saddle
connection whose projections on 7 and % do not exceed v/S and whose length is
thus not greater than v/2S. So m(w) < V25, as required.

Definition 3.1. An affine automorphism of a planar structure w is a homeo-
morphism f: M — M that maps singular points to singular points and is an
affine map in the local coordinates of the atlas of w. This is equivalent to the fact
that f is an isomorphism of the planar structures aw and w, where a € GL(2, R).
The operator a is said to be the linear part of the automorphism f.

Since the areas of surfaces with isomorphic planar structures are equal, and since
under transition from w to aw surface area is multiplied by | det af, the determinant
of the linear part of an affine automorphism must be equal to 1 or —1.

Definition 3.2. The stabilizer I'(w) of a planar structure w is the set of operators
a € SL(2,R) for which the planar structure aw is isomorphic to w.

In view of the above, the stabilizer consists of the linear parts of the affine
automorphisms preserving the orientation of the surface.

Proposition 3.3. ['(w) is a discrete non-uniform subgroup of the group SL(2,R).

Proof. If the planar structures w; and wy are isomorphic, then for any a € GL(2, R)
the planar structures aw, and aw, are also isomorphic (the isomorphism is given by
the same map). This implies that I'(w) is a group. Further, since SC(aw) = SC(w)
for all a € I'(w), Proposition 3.1 implies that ['(w) is a discrete group. Finally, let &
be a development of an arbitrary saddle connection of the planar structure, and let
a be an operator in SL(2, R) such that a7 = 1/2v. Clearly, m(a™w) — 0 as n = 0.
If I'(w) were a uniform subgroup, that is, the quotient group SL(2, R)/T'(w) were
compact, then some subsequence {a™T'(w)} C SL(2,R)/T'(w) would converge to
a certain bI'(w), with b € SL(2,R), as ¢ ~» oc. Then there would be a sequence
{7} C I'(w) such that a™+v; — b in SL(2,R) as i — oo. By Proposition 3.2,
m(a™y;w) = m(bw) as i = oo. This however, is impossible, since m(a™ (yw)) =
m(a™w) = 0 as i = oo and m(bw) # 0. This contradiction shows that T'(w) is a
non-uniform subgroup of SL(2, R).
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3.2. Veech’s theorem.

Theorem 3.4 (the Veech alternative). Suppose that the planar structure w is such
that its stabilizer I'(w) is a lattice in SL(2,R). Then w is an elementary planar
structure. Moreover, the pencil in the direction T has a single periodic component
iof and only if av =7V for some a € I'(w), a # 1; if w has singular points, the latter
is true if and only if w has a saddle connection parallel to ©.

The proof of this theorem consists in the successive application of the following
four lemmas.

Lemma 3.5 (Masur [10], Theorem 1.1). Suppose that the planar structure w has
singular points and is such that m(gtw) -» 0 as t — +o00, where

t2
gt = (FO e—t/2> € SL(2,R).

Then the flow in the vertical direction is strongly ergodic.

(This formulation of the lemma is different from the original formulation; how-
ever, it is completely equivalent to it.)

Lemma 3.6. If the planar structure w is such that m(gtw) — 0 as t = +o00, then
¢"(1-T(w)) —= oo in SL(2,R)/T(w) as t = 4oo0.

Proof. We proceed as in the proof of Proposition 3.3. Suppose that g!(1-I'(w)) - oo
as t — +4oo. Then for some sequence {t;} C R tending to +oo we have
gi(1-T(w)) = h-T(w), where h € SL(2,R). Furthermore, we can find a sequence
{7} C I'(w) such that g'y; — h in SL(2,R) as i — oo. By Proposition 3.2,
this implies that m(g" v,w) = m(hw) as 1 = oco. Since m(ghviw) = m(g*w) and
m{hw) # 0, we find that m(gtw) - 0 as t = +oo. This proves the lemma.

Lemma 3.7. Let ' be a lattice in SL(2,R) such that g*(1 -T) — oo in SL(2,R)/T

?) €T for some a # 0.

as t = +00. Then (i
Proof. The group SL(2, R) acts on the Lobachevskii plane H?, realized as the half-
plane {z € C|Im z > 0}, by linear-fractional transformations:

(a ,8) _az+f
z = .

v 4 Yz 446
Moreover (see [16]), for the action of the lattice I there is a fundamental polygon
D C H? with finitely many sides. D has finitely many vertices A;,..., A; on the
absolute, and the sides of D through A; are mapped to each other by an operator
a; € T of the form :tr,-mfl, where ¢ is the operator formed by a fixed horizontal
vector (it acts on H? by the shift z — 2+a) and r; is the rotation operator mapping
o0 to A;.

For each z € H? we let v(z) be the element of ' for which y(z)z € D. The
curve v(g~tz)g ¢z (which is, in general, discontinuous) does not have limit points
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as t = +oo. In fact, otherwise y(g7%2)g %z — z € H? as i = oo, where {t;} is a
sequence tending to +00. Since the operators mapping z into a closed neighbour-
hood of Z form a compact set in SL(2, R), the sequence {y(g~*2)g~*} would have
a limit point in SL(2, R). Hence, the sequence of inverse elements {g* (y(g~*2))~!}
would also have a limit point, contradicting the fact that g*(1-T) = oo in SL(2,R)/T
as t — +oo.

Weput lI(c) ={z € C|Imz > ¢ > 0}, I(¢;, 8) = {z € H(c) | @« < Rez < B},
fI(c;a,ﬁ) = {2z € U(¢;a,B) | Imz = ¢}. The polygon D consists of a compact
part K and k beaks (or wedges) r;(Il(¢;; i, 8:)), 1 € @ < k, separated from K by
arcs 7'1-(I~I(ci;ai,[3i)) (here, a; and 3; are uniquely determined by D). For every
z € ri(I1{¢;)), v(z) is easily seen to be a power of a;, and v(z)z € r;(Il{c;; a;, Bi)).
If 2 € r; (31 (cy)), then ¥(z)z € ri(I(ci; ay, Bi).

We fix a point z € H?. Since the curve v(g *2)g !z does not have limit points
as t = 400, it does not intersect K for t larger than some 5. We put ¥ = y(g~t02);
then (97 z) € r;(I1{e;; oy, B;)), where 1 < % < k. The curve g7!z is a Euclidean
straight line, tending, as t — 400, to the point 0 on the absolute. Therefore
the curve ¥(g7'z), t > to, is a Euclidean straight line or circle tending to the
point ¥(0). If 5(0) # A;, then at a certain moment of time #; > t; the curve
¥(g~'z) would intersect the boundary of the domain r;(II(c;)); at the same time
the curve v(g'z)g 'z would intersect the arc 7;(II(c;; i, 8;)) and would enter K.
This contradicts the choice of t5. So ¥(0) = A;, and then @ = ¥ 'a;7 € T maps the
point 0 to itself. Since a is conjugate to a; (and, consequently, also to some o),
it must have the form =+ (1 0), a # 0. Moreover, a2 = ( 1 0) € I'. This
a 1 200 1

proves the lemma.

t

10

1
singular points, then the flow in the vertical direction corresponding to w has only
periodic components. Moreover, for each pencil of periodic trajectories, the ratio of
the length to the width is commensurate with o.

Lemma 3.8. If a = € I'w), @ # 0, and the planar structure w has

Proof. An affine automorphism with linear part a acts as a permutation on the
finite set {L1,..., Ly} consisting of the trajectories emitted from singular points of
w in the vertical direction (upwards and downwards). Hence, for some n € N the
affine automorphism ¢™ maps each trajectory L; to itself. Moreover, clearly, all
points on the trajectory remain fixed. Consequently, the closure of the trajectory
does not have interior points (otherwise the linear part of ¢™ would be the identity).
By Theorem 2.6, L; is a saddle connection. Now let p be a point on the surface not
lying on a vertical saddle connection and L the vertical trajectory passing through p.
For some € > 0 the point p does not belong to the e-neighbourhood U; of the union
of the saddle connections L;, ... L. However, it follows from the above that U,
is invariant under the flow in the vertical direction, so no point of L can belong
to Us. Applying Theorem 2.6 we find that L is a periodic trajectory.

So, the flow in the vertical direction splits into periodic pencils. Moreover, under
the action of ¢™ a point in the pencil at a distance z from its left boundary moves
vertically upwards through a distance x - na. Since ¢™ is continuous and leaves
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invariant the points on the boundary of the pencil, for a value of z equal to the
width w of the pencil the magnitude of the motion must be a multiple of the
length [ of the pencil. Thus, w-na = Im, m € N; in particular, @ and I/w are
commensurate.

Proof of Theorem 3.4. First, since the group of automorphisms (shifts) of the planar
torus acts transitively on it, by adding a removable singularity to the planar torus
its stabilizer does not change. By Proposition 2.11 we may assume that, without
loss of generality, the planar structure w does have singular points.

Let ¥ be an arbitrary direction and b the rotation mapping 7 into the vertical
direction. Clearly, I'(bw) = b['(w)b~?!, hence I'(bw) is also a lattice. Furthermore,
the planar structures w and bw induce the same Lebesgue measure on the surface,
and the flow in the vertical direction for bw coincides with the flow in the direction
¥ for w. Finally, SC(bw) contains a vertical vector if and only if SC(w) contains a
vector parallel to 7, and if av = 7, with a € I'(w), a # 1, then a,(bv) = by, with
ay = bab™! € ['(bw), a1 # 1. Thus, without loss of generality we may assume that
the direction ¥ mentioned in the conditions of the theorem is vertical. If w has a
vertical saddle connection, then clearly m(gtw) — 0 as t = 400 and, by Lemmas 3.6
and 3.7, I'(w) must contain a non-identity element mapping the vertical vector to
itself. In the presence of such an element, the flow in the vertical direction can
have periodic components only, by Lemma 3.8. Finally, if the flow in the vertical
direction has a periodic component, then a vertical saddle connection can be found
on the boundary of the component. So, to finish the proof it remains to show that
the flow in the vertical direction is strongly ergodic if it does not split into periodic
components. This follows from Lemmas 3.5-3.8.

We finish this subsection with another lemma, which is in a certain sense the
converse of Lemma 3.8 (we will need it in §4).

Definition 3.3. The least common multiple LCM(ry,...,rx) of positive rationally
commensurate numbers r;,..., 7 is the least positive integer that is an integral
multiple of each of these numbers.

Lemma 3.9. Suppose that the flow in the vertical direction corresponding to the

planar structure w has only periodic components. If ry,...,7x, the ratios of the

1) erw),

length to the width of all pencils in the flow, are commensurate, then

where a = LCM(ry,...,7%).

Proof. We define a bijective map ¢ from the surface onto itself as follows: ¢ leaves
invariant each point p not belonging to the vertical saddle connection; otherwise p
is moved vertically upwards through a distance z - a, where z is the distance from
p to the left boundary of the pencil of vertical periodic trajectories containing p.
Since « is an integral multiple of each of the numbers ry,. .., 7, it follows that ¢
is a homeomorphism. By construction, ¢ is then an affine automorphism of w with

linear part 10
ar part ()
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3.3. Masur’s lemma. Let T be an interval exchange transformation on the
interval I = [a,b] (see §2.3) and ag = a, ay,...,ar = b the points in I at which T
is not defined. We denote by (7' the length of the shortest intervals into which I

is partitioned by these points ag,a;, ..., a. Furthermore, for each n € N we put
en(T) = e(T™).

Theorem 3.10 (3], [15]. If ne,(T) » 0 as n — oo and T is minimal, then T is
strongly ergodic.

Now let w be the planar structure on the surface M , and let ¥ be an arbitrary
direction. For each [ > 0 we consider its saddle connections of length at most [ and
not parallel to 7, and project these onto the direction orthogonal to . We denote
by E(7) the shortest of these projections.

Theorem 3.11. If IE;(7) » 0 as | = +00 and the flow on M in the direction T
is menamal, then this flow is strongly ergodic.

This theorem follows from the following proposition.

Proposition 3.12. Theorems 3.10 and 3.11 are equivalent. Lemma 3.5 follows
from Theorem 3.11.

Proof. We will first prove that Theorem 3.11 follows from Theorem 3.10. We
suppose that the flow on M in the direction 7 is minimal and that lE(T) » 0
as I = 4o00. We consider an arbitrary geodesic interval T perpendicular to ¥. By
Proposition 2.4 and Theorem 2.6, the flow in the direction T induces on I a minimal
interval exchange transformation T and is a special flow over T'. The set S of points
of I from which a trajectory issues in the direction & and hits a singular point, is
everywhere dense in [ {this follows from Theorem 2.6). By making I smaller we
may assume that its end-points are contained in S. Let S; be the set of points
of S for which the trajectory in the direction v hits a singular point before the
first return to I, returns to an end-point of I. or is an end-point of I itself. The
set Sp is finite, and I\ S) consists of finitely many intervals on each of which T
acts as a shift. Consequently, we may assume that 7' is not defined at the points
of S7. Moreover, the trajectory in the direction @ emitted from a point = € I passes
through a singular point before a time #; if z € 51, and returns to I before a time
to if @ ¢ Sy (with #;, £, certain constants).

Let n € N, and let x1, 2, be points of I at which T" is not defined and with
mutual distance €, (7). The trajectories in the direction ¥ emitted from z1 and 4
hit singular points lying at distance not exceeding (n — 1)t2 + t;. This implies the
existence of a saddle connection whose projection onto the direction T has length
at most (n — 1)ty + ¢, while its projection onto the orthogonal direction is positive
and has length at most £, (7). The length of this saddle connection does not exceed
2nty for n large. Consequently, Ey,y, (T) < en(T') for n large. So, ne, (T) » 0 as
n — o0, and T is strongly ergodic by Theorem 3.10. In this case the flow on M in
the direction ¥ is also strongly ergodic, being a special flow over 7.

Now we will, conversely, derive Theorem 3.10 from Theorem 3.11. Let T be
a minimal interval exchange transformation on I and assume that ne(T) » 0
as 1. — 00. We associate with T' a planar structure on a certain surface M, as
described in §2.3. The interval I embeds into M as a horizontal interval, and the
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flow on M in the vertical direction ¥ is a special flow over T, hence minimal. We
fix an n € N and consider a saddle connection L of length not exceeding n and
with horizontal projection E, (7). We denote the end-points of L by A; and A,
in such a way that the direction from A; to A; makes an acute angle with 7. The
trajectory emitted from A; in the direction — hits after time 1 a point z; € I
at which T is not defined. Let z, € I be the point of I nearest to x; with the
property that the trajectory emitted from it in the direction 7 passes through a
singular point lying at a distance not exceeding n + 1. Clearly, T" is not defined
at 5. Hence €,(7T) is at most equal to the distance between z; and x5, which, by
the choice of L, does not exceed E,(7). So, e,(T") < E,(7), that is, lE/(T) = 0
as | — +oo. By Theorem 3.11, the flow in the direction 7 is strongly ergodic, and
hence its generating map T is strongly ergodic.

Finally, we will show that Lemma 3.5 is a consequence of Theorem 3.11. Clearly,
the condition m(g'w) — 0 as t — 400 is equivalent to the fact that for an arbitrary
4 > 0 and sufficiently large { there is a saddle connection whose vertical projection
has length at most 4/, while the length of its horizontal projection is at most §/1. It
is also equivalent to the fact that for sufficiently large [ there is a saddle connection
whose vertical projection has length at most [, while the length of its horizontal
projection is at most 4% /1. The condition limy_, 4o [E;(T) = 0, where T is the vertical
direction, differs from the previous condition only by an additional restriction in
the choice of the saddle connections: they cannot be vertical. Thus, the condition
m(gw - 0 as t - +oo implies that (E;(¥) - 0 as [ — +oo. Moreover, in
this case the planar structure w does not have vertical saddle connections and, by
Theorem 2.7, the flow in the vertical direction is minimal. Thus, all conditions in
Theorem 3.11 hold.

It follows from the above proof that, for a flow on M in the direction 7,
Theorem 3.11 asserts more than Lemma 3.5 if and only if w allows saddle con-
nections parallel to .

3.4. Pencils of periodic trajectories. Let w be a planar structure on a sur-
face M, having singular points. We assume that the geodesic trajectory emitted
from a singular point x € M in a direction ¥ € S! returns to z after a time ¢. Then
each of the vectors t7 and —t¥ is called a development of this periodic trajectory.
The points on the surface from which periodic trajectories with such developments
leave (or, which is the same, the trajectories themselves) form a pencil: a domain
bounded by saddle connections in the direction T (see §2.3). Moreover, there can
be several pencils corresponding to the same development. A pencil is called
multiple if its trajectories are periodic trajectories of minimal length, traversed
several times.

For cach R > 0 we denote by N(R) and S(R) the number and the sum of the
areas of the pencils of periodic trajectories of length at most R, without counting
multiple pencils. Let N*(R) and S*(R) be the same quantities, but including
multiple pencils in the count. Moreover, we denote by Nyg(R) the number of saddle
connections of w whose lengths are at most R. Masur [7], [8] has shown that for
large R:

c_ - R* < Nyo(R) < cq - R?, co - No(R) < N(R) < No(R),
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where cy,c_,co are positive constants. Since N*(R) = N(R) + N(R/2) +
N(R/3) + ---, for large R we also have

¢t -R*< N*(R)< ¢, - R?

b

*

where ¢} ,c* are positive constants. Moreover, we clearly have S(R) < S- N(R),
S*(R) < S- N*(R), where S is the surface area of M.

The following theorem supplements Veech’s result on the distribution of periodic
trajectories of planar structures, obtained in [1].

Theorem 3.13. If the stabilizer I'(w) s a lattice, then each of the quantities
No(R), N(R), S(R), N*(R), S*(R) has, as R — 00, asymptotic behaviour of
the form cR® + o(R?), where c is a positive constant.

Proof. Since I'(w) is a lattice, we can find finitely many operators ay, ..., a; € I'(w)
and non-zero vectors vy, ..., 7, where a;7; = +7; but a; # +1, such that every
operator a € I'(w), a # £1, having eigenvector 7 with eigenvalues +1 is conjugate
in I'(w) to an operator of the form +a?, 1 <i < k, n # 0 (see [16]). Moreover, 7 is
collinear with a vector of the form 47;, v € T (w). Without loss of generality we
may assume that the vector v; in this representation is uniquely determined. By
Theorem 3.4, the vectors parallel to saddle connections (or periodic trajectories)
of w are precisely the fixed vectors of the non-identity operators in I'(w), that is,
vectors of the form ~%;, 1 < i < k, v € I'(w), and vectors collinear with these. Let
Ii,...,1}  be the lengths of the saddle connections parallel to 7;, let L3,..., L}, be
the lengths of the pencils of periodic trajectories parallel to 7;, and let Si,..., S8,
be the areas of these pencils. If y € I'(w) and  1s an affine automorphism of w with
linear part v, then ¢ is a bijective correspondence between the saddle connections
and the pencils of periodic trajectories parallel to o; and YU;, respectively. Under
this correspondence, the lengths of the saddle connections and pencils are multiplied
by |v:|/|7;|, while the areas of the pencils are not changed. Thus, from what was
said above we obtain

k  m; k  n;
No(R) = ZZNm (R-[wil/li),  N(R)= ZZNF‘(R B:l/ L),

k n;
S(R) = ZZS} - Ny, (R - [v]/ L),

=1 j=1

where Ny, (R) is the number of vectors of the form VUi, v € I'(w), of length at
most R, considered up to multiplication by +1. We now use the following lemma,
which was proved by Veech.

Lemma 3.14 [1]. Let U be a non-zero vector which is fized under a non-identity
element of the lattice I' C SL(2,R), and let u be a vector of length |5|~! orthogonal
(a7, V)
(v,7)

to v. Let a be the minimum of the quantities over alla € T, a # *1,
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such that av = +v. Then
Ng(R) = (a- V(I"))_1 “R*+0(R*) as R — oo,

where V(T') is the non-Euclidean area of a fundamental domain for the action of I
on H2.

This lemma, plus the formulae above it, give the required asymptotic behaviour
for the quantities No(R), N(R), S(R). Let ¢ be the constant in the asymptotic
formula for N(R). Then for any € > 0 and all values of R exceeding a certain
Ry = Ro(e) the following inequality holds:

(c—¢€)-R*< N(R) < (c+e¢) - R%
Since N*(R) = N(R)+ N(R/2) +---, for any n € N and R > nRy we have
N*(R) 2 (c—e)1+272+---+n7?%) R?,
whence -
lim inf N*(R)/R*>c- Y n7?
Furthermore, for any R > Ry we have

NY(R)<(e+e)(1+27 4+ +n5®)-R*+ Y N(R/n),  no=|[R/R.

n>ng

Since the length of a periodic trajectory is not smaller than the length of some
saddle connection, N(R) = 0 for R < R; = m(['(w)). Hence,

. N(R/m= 3 N(R/n)<N(Ro)R/Ri.

n>ng no<n<[R/R1]
So,
N*(R)<(c+¢g) Zn_Z-R2+R'N(RO)/R1~
n:l

Since € has been chosen arbitrarily,

N*(R -
lim sup R(2 ) < c~Zn‘2.
R—o0

n=1
Combining the estimates for N*(R)/R? we obtain

2

N*(R) :c-%-R2+o(R2) as R — oo.
In a similar manner we can prove that
. SYR) = . S(R)
AR T 6 A TR

e - [T — i — " ——————r— R e s e
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§4. Examples of Veech’s theorem

4.1. Planar structures on a torus.

Proposition 4.1. The stabilizer of a planar torus and of a planar torus with one
singular point is a lattice.

Proof. As already noted in the proof of Theorem 3.4, the stabilizer of a planar
torus does not change when a singular point is added to it. Furthermore, for
arbitrary planar tori w; and wy on surfaces M; and M,, respectively, we can find
a map @: M; — M, which, in the local coordinates of the atlases of w; and wsy,
is an affine map with linear part a, deta > 0. Here, the stabilizers ['(w;) and
[(w2) are conjugate in SL(2,R) : I'(ws) = a - D(w;) -a™!, so they are either both
lattices or both not. Hence, it suffices to consider the planar torus R?/Z?. Clearly,
['(R?/Z?) contains the operator of rotation through the angle 7/2. Moreover, since
the horizontal trajectories form a single periodic pencil, of length equal to the

width, <{1) i) € [(R*/Z?). by Lemma 3.9. These two operators generate the

modular group SL(2, Z), which is a lattice in SL(2, R) (see [16]). Since the stabilizer
I'(R*/Z*) contains a lattice and is discrete (see Proposition 3.3), it is a lattice itself.

We note that for the planar torus T, 5,, the quantity N*(R) (see §3.4) is equal
to half the number of non-zero vectors in Zz, @ Z7, of length at most R. Then the
results of Bleher (see [17]) imply that

N*(R) =c¢- R? + R'?4(R),

where ¢ is a constant and #(R) is a function that is almost-periodic in the sense of
Besicovitch. This is a vast improvement of the estimate obtained in Theorem 3.13.
It is not known whether such a representation exists for other planar structures
with a lattice stabilizer.

4.2. Planar structures with one singular point. Let n and m be natural
numbers, 2 < n < m, 3 < m. We put k = LCM(n,m), N = k/n, M = k/m.
Let Pand () be the regular n-gon, respectively m-gon, with equal sides, with one
side of P and one side of @ horizontal. If n = 2 we consider only the regular
m-gon; if n.and m are odd, we require in addition that one of P or Q@ lies above

its horizontal side and the other below it. Let P, ... , Py be the n-gons obtained
from P by rotation through the angles 0, “)—A"- oo (N = 1)2—,}, and let Qy,...,Qa be
the m-gons obtained from ) by rotation through the angles 0, 27”, o (M- 1)27”

We consider the disjoint union U of all Py, ..., Py, Q1,-..,Qm. In U we identify
the side Iy of P; with the side I, of @, if I, and [, are parallel and the polygons P;
and (); lie on different sides (for identical orientations on {; and ). Ifn =2, we
dentify sides of Qy,..., Qs by this rule. By construction, each side of a polygon
P Pn,Qy. ..., Qar is identified with precisely one other side, and after the
identification the union U becomes a connected, oriented, compact surface M, ,,.
The identity maps on the interiors of the polygons Pi,... . Pn,Q1,...,Qa can be
uniquely extended to a planar structure Wy,m O My, 7. All vertices of the polygons
are identified, giving one point in M, ,,. This point is the unique singular point
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of wp m. It is removable if n = m = 3 orif n = 2 and m = 3,4 or 6. The
sides of the polygons Py,..., Py,Q1,...,Qn, and only they, are shortest saddle
connections of wy, m.

Proposition 4.2. The planar structure corresponding to the triangle with angles

™ m i s

7—2—Z (n,m € N, n<m) coincides with wy .m up to rotation and removal

n’ m’ n ™m

of certain removable singular points.

Proof. We add to w, n as removable singular points the centres of the regular
n- and m-gons making up the surface M, ,, (for n = 2, the regular 2-gon is a side of
the regular n-gon). We obtain a planar structure w,, ,,. We join the centre of each
regular polygon to the vertices of this polygon by line segments, and also join the
centres of adjoining polygons by the mid-perpendicular to their common side. All
these line segments are disjoint (except perhaps for common end-points). They are

m

saddle connections of &, ,, and partition My, , into equal triangles with angles ©

I, m — & — 2. By construction, triangles in the decomposition having a common
side lie symmetrically with respect to this side, and the number of such triangles
(which is equal to 2n - N = 2m - M = 2k) is equal to the order of the group R
generated by the linear parts of the reflections with respect to the sides of any
triangle in the decomposition.

We let. T be one such triangle. With each r € R we can associate the triangle 7).
in the decomposition to which 7' is mapped by the affine transformation f. with
linear part r. We may assume that the sets of centres of the polygons P;,..., Py
and of the polygons Q. . .., Q are fixed under f,. Thus, the triangle T} is uniquely
determined by the element r, and the correspondence r — T, is a bijection from
R onto the set of triangles in the partition; if T,, and T,, are adjoining triangles,
then 7y o 7'51 is the linear part of the reflection in their common side. Then the

construction in §2.2 implies that Wy, ,, is the planar structure corresponding to T'.

b

We will now give some examples of subgroups of SL(2, R) that are lattices. Let
n, m be integers, n,m > 2, (n,m) # (2,2). We put

ps s b

cos T +cos = cosT +1 T
1 m —_ n .
L m. L, = —2—— = cot —

Ln m = o0 ) B
) sin & ’ sin & 2n
n n

We denote by Ty, ., (or T'F ) the subgroup of SL(2, R) generated by the elements

n,m

cosT  —sinZ and 7 1 2Ly
[e2 p— . — .
" sin T cos & m 0 1
We denote by I'y;,, the subgroup generated by the elements —o, and 7.,
(T, ,, =T}F,, for n even).

Proposition 4.3. The groups Fiﬁm 2<n<00,2<m<oo,(n,m)#(2,2)) are
lattices in SL(2, R).

Proof. We consider the Lobachevskii plane H? = {z € C|Imz > 0}, on which
the group SL(2,R) acts (see the proof of Lemma 3.7). Through the point i we
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draw two non-Euclidean straight lines /; and l, making angles T with the geodesic
joining 7 and oo (I; and [, are Euclidean circles with centres at the points cot Z
and — cot T, respectively; I}, = Iy if n = 2). Let A; be the point of mtersectlon
of I; and the line Rez = Ly ,,, and let A> be the point of intersection of l5 and
the line Rez = —L, ,,. The imaginary parts of A; and A are equal to sin o for
m < oo, while for mn = oo both 4; and A, belong to the absolute Im z = 0. The
non- Euchdean 4-gon W with vertices ¢, A1, oo, A, has finite non-Euclidean area
(see [16]). The operator o, (or —o,) maps the side 14, of W to the side 1Ay,
leaving i fixed. The operator 7, m maps the side Ayo0 to the side 4,00, leaving
oo fixed. The angle of W at i is —; those at A; and A, are n— for m < oo and 0
for m = oo. In view of the above, a theorem of Poincaré (see [16]) implies that each
group Fn m 18 discrete and that W is a fundamental domain for its action on HZ2.
Since W has finite area, Fn‘m is a lattice.

We note that the modular group SL(2,Z), used in the proof of Proposition 4.1,
1s among the listed examples of lattices; it is the group I'y 3.

Figure 1. W25 = Ws 5

Theorem 4.4. The stabilizers ['(w2 ,,) and T'(wy ) contain the group Ty 2 for n
odd and the group [o/2.00 for neven. For an arbitrary n we have Ty, 3 C T(wn,2n)-
Moreover, Tg oo C I'(w34), I'15 o CT(wss). All stabilizers listed here are lattices.

Proof. After rotation through an angle =T or <, each of the regular n- and m-gons
making up M, ,, can be made to C01nc1de by a shlft with one of the polygons listed.
By the construction of My, ,,, this transformation is well defined on M, m and is an
affine automorphism of the planar structures w, ,, and Wn,m- Thus, the operators
of rotation through {-1’1 and %” belong to the stabilizers I'(wy, ,m) and I'(@y, ). In
particular, we find that I'(w; ) contains o,, for n odd; I'(ws ) and I{wn. ) contain
ony2 for n even; ['(wn 2n) contains o,; and g6 € I'(w34), —015 € T(ws5).
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Figure 3. wag

We now turn to the horizontal trajectories of these planar structures. The hori-
zontal trajectories of w,, ,, split into [ ] pencils of periodic trajectories (see Fig. 1;
here and below, identical digits 1nd1cate identified sides). The ratio of the length
to the width of each pencil is 2cot Z, that is, by Lemma 3.9, 7,2 € I'(wy, ). Then
I'n2 C I'(wn,n) for n odd. For n even we have 7, 5 = Tn/2.00, a0d Iy 9 o0 C T'(wn n)-
For n odd, w» » coincides with wy, ; for n even its horizontal trajectories form [n/4]
periodic pencils. If n is not divisible by 4, then the ratio of the length to the width
of each pencil is 2cot 7. If n is divisible by 4, all pencils except one have this ratio
(see Fig. 2). For this pencil, which contains the centre of the regular n-gon (from
which Mj ,, is made up), the ratio of the length to the width is cot ~. In any case,
I'(wy.,) contains Tn/2,000 a0d 80 Ty /5 oo C ['(wa ). Furthermore, the horizontal
trajectories of wy, », form n — 1 periodic pencils (see Fig. 3), the ratio of the length
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to the width for each of these being

T 7 cot=sinZX +cosZ
cot — 4+ cot — = Zn = - L o= i
2n 7 sin = sin &

1+cosZ)+cosZ
( n) n :2Ln,3~

By Lemma 3.9 we have 7, 3 € F{wn 2n), and I'waan) D s

AN

\\\\\\\ >

< \\\\

SN

Figure 4. ws 4, rotated through 90°

The horizontal trajectories of wy 4 split into 3 periodic pencils (see Fig. 4). The
two pencils bounded by shortest saddle connections (hatched in the figure) have
length 2d(1 + cos §) and width dsin Z, where d is the length of the shortest saddle
connection. So, the ratio of length to width is equal to 2L6,00. The third pencil is
readily seen to have this ratio equal to 2cot 75 Consequently, 76 o, € ['(w3,4) and
F(ws,1) D oo

The horizontal trajectories of wy 5 split into 4 periodic pencils (see Fig. 5). The
length and width of the pencil indicated by straight hatching in the figure are equal
to 2d(1+cos {&) and dsin [, where d is the length of the shortest saddle connection.
The length and width of the pencil indicated by skew hatching in the figure are
equal to 2D(1 + cos &) and Dsin &, where D is the length of the diagonal of
the regular 5-gon with side d. In both cases the ratio of length to width is equal
t0 2L15,00. The ratio of length to width for the pencil indicated by the broken lines
in the figure is equal to 2 cot §5 = 2Ly5 . Finally, the pencil not marked at all has
length 2d(1 + 2 cos {5 + cos %’)—) and width dsin(7/15). Their ratio is

¢ 2 ¢ P
21+2(:osﬁ+('os% ‘ Zcoszl’r—,’+2c<)s% 26051"—5+1 o
— = — = — = 2L15,00-
™ T ooe I Ea .
sin $% 251n15 Cos iz sin ¢

. e ———
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Figure 5. w35, rotated through 90°

S0, by Lemma 3.9, 715« € ['(w35) and I'(w35) D I'f5 - Thus, the stabilizer of
cach of these planar structures contains a lattice. Hence, in view of the fact that
the stabilizers are discrete, they themselves must be lattices.

We conclude by noting that in [1] the presence of a lattice stabilizer was proved
for the planar structures wy , and w,, (n > 3), was announced for w3 4, and was
conjectured for wy, », (1 2 2).

4.3. Non-lattice stabilizers. Theorem 3.4 (together with Lemma 3.8) makes it
possible to find examples of planar structures whose stabilizers are not lattices.

Theorem 4.5. The stabilizers of wy ¢ and wy 12 are not lattices in SL(2, R).

Proof. The horizontal trajectories of wy ¢ split into 4 pencils of periodic trajectories
(see Fig. 6). The ratio of the length to the width for the pencil indicated by skew
hatching in the figure is equal tor; =1 +cot & = 1 + V3. On the other hand, the
pencil not marked in the figure has length 2d(1 + ﬂcos Z) = d(3++/3) and width
dv/?2 sin 5 = d (v/3 = 1)/2 (as in the proof of Theorem 4.4, d is the length of the
shortest saddle connection). Their ratio is ry = 6 + 4v/3. The numbers r; and T2
are incommensurate, hence, by Theorem 3.4 and Lemma 3.8, the stabilizer I'(wq 6)
1s not a lattice.
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Figure 6. wy
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Figure 7. wj 1>

AOne can similarly treat the case wy 2. Its horizontal trajectories split into 4 peri-
odic pencils (see Fig. 7). The ratio of the length to the width for the pencil marked
by straight hatching in the figure is equal to r; = 1 + cot & = 3 + v/3. The pencil
marked by skew hatching in the figure has length 2d(1 + 2 g)s § tcos T) and width

d SiI‘I & their ratio is r, = 6 + 4v/3. The numbers r1 and 72 are incommensurate
again, hence the stabilizer I'(wy 12) is not a lattice.
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§5. Covers of planar structures

5.1. Finiteness of the number of covers.

Definition 5.1. Let (M;,w;) and (M>,w;) be surfaces with planar structures.
wi 18 said to cover ws if there is a continuous map f: My — M, (called a cover)
mapping the singular points of w; to the singular points of ws and acting as a shift
in the local coordinates given by the atlases of w; and wy.

In view of the compactness of the surfaces under consideration, the number of
preimages of a point £ € My under f is finite. In view of the connectedness of
the surfaces, this number is the same for all non-singular points. It is called the
multiplicity of the cover f. If z € M, is a singular point of multiplicity m and
Ti,...,Tx € My are its preimages with respective multiplicities m;y, ..., mg, then
m divides each m; and Zle m; = mN, where N is the multiplicity of the cover.

The following construction gives examples of covers of planar structures. Suppose
we partition a rational polygon @ into equal polygons P = Py, P;, ..., Py, any two
of these intersecting only along common sides and at common vertices, and polygons
with a common side lying symmetrically with respect to this side. Moreover, we
assign to each P; a + or — sign in such a way that polygons with a common side
have different signs (if P is not axially symmetric, this condition follows from the
previous ones). The construction in §2.2 associates with P and @ planar structures
wp and wg on certain surfaces Mp and Mg.

Proposition 5.1. The planar structure wg covers wp, possibly after the addition
to wq or removal from wp of a certain number of removable singular points. The
multiplicity of the cover is a divisor of n.

Proof. From the construction it follows that there are affine maps a4, ..., a, such
that a; maps P; to P and, for arbitrary P; and P; with a common side, a]-_lai is
the symmetry with respect to this side. The maps a1, ..., a, can be extended to a
single continuous map f: Q — P.

Let R(Q), R(P1), ..., R(P,) be the groups generated by the linear parts of the
reflections in the sides of the polygons. By construction, R(P;) = --- = R(P,), so
that R(Q) C R(P). We define the map g: @ x R(Q) —» P x R(P) by g(z,r) =
(f(z),r@; "), where i is such that z € P; and &, is the linear part of a; (clearly,
@; € R(P)). Then the spaces @ x R(Q) and P x R(P) can be factored to surfaces
Mg and Mp and the map g can be factored to a well-defined map h: Mg — Mp.
Now, h is a cover of the planar structures wg and wp of multiplicity n /m, where m
is the index of the subgroup R(Q) in R(P), except that certain non-singular points
on Mg can be mapped to (removable) singular points on Mp. To be precise, these
are points of the form (z,r), where z is a vertex of a polygon P, that is not a vertex
of Q. To correct this situation it suffices to add such points to the singular points
of wg. If none of the points in the preimage f~!(f(z)) is a vertex of Q, instead of
this we may regard the points (f(z),r) € Mp as singular for wp.

Definition 5.2. Let (M,w), (My,w;) and (Ma,w;) be surfaces with planar struc-
tures. Two covers of planar structures f;: M; —» M and fa: My — M are called
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wsomorphic if there is an isomorphism ¢: M; — M, of w; and w, such that
fi = faop. We can similarly define the isomorphism of covers g;: M — M,
and go: M — M,.

Proposition 5.2. A planar structure w on a surface M admaits only a finite number
of covers of given multiplicity, up to isomorphism. This number is bounded by a
constant depending on the genus of M, the number of removable singularities of w,
and the multiplicity of the cover.

Proof. We consider an arbitrary triangulation of M for which the vertices are the
singular points of w, the edges are the saddle connections, and the faces do not
contain interior singular points. The proof of Theorem 2.9 implies that the num-
ber of edges of the triangulation is 3(k — x), where k is the number of singular
points of w and x is the Euler characteristic of M. We choose edges (saddle con-
nections) L,..., L, such that the domain My obtained from M by deleting the
singular points and the selected saddle connections becomes connected and simply-
connected. We cut M along each L;, and we denote the boundaries of the cut by
L} and L;. By adding to M, the boundaries of the cuts we obtain a compact
simply-connected surface M’ with boundary. We now take N copies of M’ (that
is, the direct product M’ x {1,2,...,N}), given by permutations 7{,..., 7, on
{1,2,...,N}, and identify the segments LT x {j} and L x {m(j)}, 1 <i < n,
1 < j < N. Weobtain a compact surface M = M"(m,...,n,) without boundary.
The surface M" is connected if the group generated by the permutations 7y,. .., 7,
acts transitively on {1,2,..., N}. The planar structure on Myx{1,2,...,N} c M"
induced by restricting w to M, can be uniquely extended to a planar structure
wlmy, ..., m,} on M". Moreover, the natural projection p: M" — M is an N-fold
cover of the planar structures w(m,...,m,) and w. The total number of covers
thus constructed does not exceed (N!)". By construction, n < 3(k — x). By
Theorem 2.9, the number of non-removable singular points of w is at most —x.
Hence, (N!)" is bounded by a constant depending on y, N and the number of
removable singular points of w.

To finish the proof it now suffices to show that every N-fold cover f of w by some
planar structure w; on a surface Ay is isomorphic to one of the covers constructed
above. We take a point «w € My and let 2y, ...,z n be its preimages under f. Since
My 1s simply-connected, there are unique maps fi,..., fy from My into M; that
arc right-inverse to f and such that f;(z) = «;, 1 <1 < N. Moreover, the domains
fi(Mq), ..., fn(Mo) are pairwise disjoint and are separated from each other by
the preimages of the saddle connections Ly, ..., L, (each saddle connection has
N preimages). This implies that the map ¢: My x {1,2,..., N} — M, given by
o(y,1) = fi(y) can, for a certain choice of permutations 7, ..., m,, be extended to
a continuous map ¢: M"(my,...,m,) = M;. By construction, foyp = p and @ is
an isomorphism of the planar structures w(m,...,m,) and w;. Thus, the cover f
is isomorphic to the cover p.

Proposition 5.3. The number of covers realized by a planar structure w is finite,
up to wsomorphism, and bounded by a constant depending on the genus of M and
the number of singular points of w.

Planar structure
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Proof. Let (Mj,w) and (Msy,w,) be surfaces with planar structures, and let
fi: M — M, and f,: M — M, be covers of the planar structures. Let S be
the set of points x € M; such that the preimages fl_l(m) are mapped by f2 to a
single point of M,. The definition of cover implies that S is closed and that each
non-singular point of it lies in its interior. Thus, S = M; so long as S contains at
least one non-singular point. Moreover, we can define a map ¢: M; — M, such
that fo = @ o fi. Clearly, ¢ is a cover of the planar structures w; and w,. If f;
and f have the same multiplicity, then o is an isomorphism, that is, f; and f, are
isomorphic covers.

We now choose an arbitrary direction v and a small € such that the e-neighbour-
hoods of the singular points of w do not intersect. From the singular points of
w we draw the geodesic intervals in the direction T of length . Let zy,...,2,
be the points at which these intervals end (there are as many as the sum of the
multiplicities of the singular points). For each cover f: M — M we let S(f)
be the preimage of f~'(f(z1)). Clearly, S(f) C {z1,...,z,}. From what was
said above it follows that the covers f; and f, realized by w are isomorphic if
S(f1) = S(f2). Thus, up to isomorphism there are at most as many distinct covers
as there are subsets of {z3,...,z,}, that is, 27!, This finishes the proof, since, by
Theorem 2.9, n = k — x, where k is the number of singular points of w and x is the
Euler characteristic of M.

We note that the proof of Proposition 5.2 includes a construction of all (up to
isomorphism) covers of a planar structure w. A similar construction for covers
realizable by a planar structure w cannot be found in the proof of Proposition 5.3.

5.2. Relation with stabilizers.

Theorem 5.4. Suppose that a planar structure wy is covered by a planar struc-
ture wy. Then the group T'(w1) NT(we) is a subgroup of finite index in each of the
groups I'(wy) and T'(ws). In particular, T'(w;) and T'(ws) are both lattices or are
both not.

Proof. Let M; be the surface on which w; is given. Let S be the set of triples
(M.w, f) with w a planar structure on the surface M and f: M; - M a cover
of w by wy, and let S be the set of such triples regarded up to isomorphism of
covers. The map f realizes also a cover of the planar structures aw; and aw, with
a € GL(2,R). Furthermore, an arbitrary element ¢ of the group G of affine auto-
morphisms of wy is an isomorphism of the planar structures w; and a(p) lwi,
where a(y) is the linear part of ¢. Thus, a right action of G is defined on
S:(M,w, flo = (M,a(p) " w, f o p). We note that isomorphic covers are mapped
to isomorphic covers, that is, the action factorizes to an action of G on S. Since
by Proposition 5.2 the set S is finite, there is a subgroup G C G of finite index
that acts as the identity on S. Let T be the group of linear parts of the affine
automorphisms in Gy that preserve the orientation on M. Clearly, " is a subgroup
of finite index in ['(w;). On the other hand, since Gy acts as the identity on S, it
follows that I is contained in the stabilizer of every planar structure covered by w;.
In particular, I' C I'(wy) N {(ws), that is, ['(w ) NT(ws) is a subgroup of finite index
in I'(wy).

e e
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The finiteness of the index of I'(w;) N T'(w2) in I'(ws) can be similarly derived
from Proposition 5.3.

Proposition 5.5. The stabilizer of a planar structure corresponding to a regular

n-gon is o lattice.

Proof. By joining the centre of the regular n-gon to the vertices and the mid-points
of the sides using straight line segments, we obtain a decomposition of the regular
n-gon into triangles with angles 7/2 and m/n. Proposition 5.1 implies that the
planar structure w, corresponding to the regular n-gon covers the planar structure
wy, corresponding to a triangle in the decomposition; moreover, in the latter we
have to take into account the non-singular points arising from the vertices with
angles m/2 and n/n. With this understanding, I'(&,,) is a lattice, as has been
shown in §4.2. By Theorem 5.4, I'(w,,) is also a lattice.

Proposition 5.5 was proved by Veech in [2], where he also studied the planar

structures w, and their stabilizers in some detail.

The following example shows that we have to consider removable singularities.
An isosceles triangle with angle 27 /n at the vertex is partitioned by the altitude
into two triangles with angles m/2 and w/n. Therefore the planar structure w/,
corresponding to it covers w,, where in this case we have to take as non-singular
the points corresponding to the angle 7/2 but not those corresponding to 7/n. We
can show that with this understanding, I'(,,) is not a lattice for any odd n > 3;
consequently, I'(wy,) is also not a lattice. In particular, it is not known whether w/,
is an elementary planar structure for these values of n.

We give a sufficient condition for I'(w) C I'(@), given that w covers w.

Proposition 5.6. Let f be a cover of a planar structure & by a planar structure w,
having multiplicity N. If all covers of multiplicity N realized by w are pairwise
isomorphic, then T'(w) C T'(@). In particular, this is true if for some v € R? the
planar structure @ has a unique saddle connection with development T, for example,

[wy) C P(wy).

Proof. We assume that all covers of multiplicity NV realized by w are isomorphic
to f. We choose an element a € T'(w) and let ¢ be an affine automorphism of w
with linear part a='. Then f o ¢ is a cover of the planar structures w and a@. The
multiplicity of f o ¢ is IV, hence f and f o ¢ are isomorphic. This implies that @
and aw are isomorphic, that is, a € T'(@). Since a is arbitrary, this implies that
INw) c I'(w).

Now we assume that @ has a unique saddle connection with development 7.
Then w has exactly N saddle connections with this development. Clearly, for any
cover of multiplicity N these saddle connections become a single saddle connection.
Therefore, the proof of Proposition 5.3 implies that all such covers are isomorphic.

We finally show that I'(w,) C I'(©,). In fact, w, covers @,, and all shortest
saddle connections of w,, (their preimages under the cover correspond to the sides
of the regular n-gon) have distinct developments.
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§6. Another proof of Veech’s theorem

6.1. Property A.

Definition 6.1. Let w be a planar structure on a surface M. An w-triangle is a
triangle on M whose vertices are singular points, whose sides are saddle connections,
and whose interior does not contain singular points.

Definition 6.2. A planar structure w is said to have property A if the area of
each w-triangle is larger than a positive constant. w is said to have property B if,
moreover, the area of each w-triangle can only assume finitely many values.

Proposition 6.1. Property A is equivalent to the following: if a planar structure w
has a saddle connection in some direction, then all trajectories in that direction are
either periodic or saddle connections; moreover, the ratio of the lengths of parallel
saddle connections is bounded above by a constant which does not depend on the
direction.

Proof. We assume that w has property A, and let & be a positive constant smaller
than the area of every w-triangle. We consider an arbitrary saddle connection L.
Through a point x € L we draw the geodesic interval J of length ¢ = 2§/1, where
['is the length of L, perpendicular to L. The trajectories emitted from any point
of this interval distinct from z and parallel to L do not hit a singular point (for
otherwise there would be an w-triangle with L as one of its sides and with altitude
perpendicular to L not exceeding J; the area of this w-triangle would be no larger
than 1/2-1-¢ = 4). This implies that all such trajectories are periodic. Thus,
an arbitrary saddle connection bounds 2 (possibly coincident) pencils of periodic
trajectories. On the other hand, there are only finitely many pencils of periodic
trajectories parallel to the given direction, and each such pencil is bounded by
saddle connections. Therefore the saddle connections and periodic pencils parallel
to L cover the whole surface M, since M is connected.

Furthermore, if a saddle connection L bounds a pencil of periodic trajectories
of width €, then there is an w-triangle with L as one of its sides and whose alti-
tude perpendicular to L is equal to €. This implies that the ratio of the lengths
of two saddle connections bounding the same pencil is equal to the ratio of the
areas of certain w-triangles, and therefore does not exceed S/8, where S is the
area of M. In view of the assertions proved above, for any pair of parallel saddle
connections L and L' we can find a chain of pairwise distinct saddle connections
Lo=1L,Ly,...,Ly = L' in which any pair of adjacent saddle connections bounds a
single pencil. The number of saddle connections and the number of periodic pencils
parallel to the given direction do not exceed a certain number ky which depends on
w only. Consequently, the ratio of the lengths of parallel saddle connections does
not, exceed the constant (S/8)*~1, as required.

We now turn to the second part of the assertion. We assume that w is such that
the geodesic flow in the direction parallel to the saddle connection splits completely
into pencils of periodic trajectories and, moreover, we assume that the ratio of the
lengths of parallel saddle connections is bounded above by a constant C. Further,
let ¥ be the direction parallel to the saddle connection, and P an arbitrary pencil
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of periodic trajectories in this direction. We choose the saddle connection L that
intersects the trajectories of P and does not leave its boundaries (the end-points
of L lie on oppositely located sides of the pencil). Let ! be the length of L, and
let « be the angle between L and the trajectories in the pencil. Then the width
of P is Isina. Furthermore, let P; be another pencil of periodic trajectories in
the direction 7. Since all trajectories parallel to L; are either periodic or saddle
connections, we can find a saddle connection L; parallel to L and intersecting the
trajectories of P (in general, L goes beyond the boundary of P;). If I; denotes
the length of L, then the width of P is at most /; sin «, so that the ratio of the
widths of P, and P is at most Jl;‘n% == l—lL < C. The ratio of their lengths does
not exceed Cky, where k; is the number of saddle connections in the direction T.
Consequently, the ratio of the areas of P, and P is at most C%k,. We denote
by k. the number of pencils of periodic trajectories parallel to 7. The total sum
of the areas of all pencils is S, the area of M, so that the area of each pencil
is at least H—("Qm As already noted above, k; and k» are bounded above
by the constant kg, which does not depend on the direction ¥. Consequently, the
area of an arbitrary pencil of periodic trajectories is at least equal to the constant

We now consider an arbitrary w-triangle 7. Let L be a side of it and let P be
the pencil of periodic trajectories bounded by the saddle connection L and lying
on the same side of L as T'. Clearly, the width of P is not larger than the altitude
of T perpendicular to L, and its length is not larger than Cko times the length
of L. So, the ratio of the area of the pencil to the area of the w-triangle is at
most, QCk(), and hence the area of the w-triangle is at least equal to the constant

e an(k i 28,\,(\ > 0. Thus, the w-triangle has the property A.

Proposition 6.2. Suppose that the planar structure w has property A. Then the
area of each pencil of periodic trajectories is larger than a positive constant. If
1.7y, ..., T are the ratios of the length to the width for all pencils of periodic tra-
jectories in a certain direction ( parallel to a saddle connection), then ri,ro,... 1
LCIV[(Tl s T2, ,T'k)
7
a constant which does not depend on the direction. 1(See §3.2 for the definition of
LCI\/I(T] yTo, 000, I';,‘).)

are rationally commensurate and the ratio s bounded above by

Proof. The fact that the area of each pencil of periodic trajectories is larger than a
positive constant Sy is obvious, since each pencil contains an w-triangle. Let P; and
P, be two pencils of periodic trajectories bounded by a single saddle connection L
of length [, and let r; and 7, be the ratios of the length to the width for each of
them. We will show that 1 and r, are commensurate and that their least common
multiple exceeds themn by at most kgS/Sp times, where S is the area of M and kg
1s the maximum possible number of distinct saddle connections or periodic pencils
in a single direction.

Without loss of generality we may assume that P and P, are horizontal. Let
Ly be the saddle connection intersecting the trajectories of Py, not going beyond
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the boundaries of P, and having common end-point O with L. We put

h, = ((1) T) forall z e R.
Clearly, each w-triangle is also an hyw-triangle, with the same area. For some a eR
the saddle connection Ly is vertical with respect to h,w. In this case we can find
for any n € Z a saddle connection L,, intersecting P; that goes out from O and is
vertical with respect to h,yprw. Moreover, I and L, are legs of the right-angled
hatnr,w-triangle T),. Let () be the singular point on the side of P, lying opposite L,
and let (), be the orthogonal (with respect to Ratnrw) projection of Q on the side
of the pencil containing L. If for some n € Z the point Qn lies on L, then there
is clearly an hqqyp,, w-triangle T with side L,, such that Q is the vertex opposite
to Ly, while the altitude from @ is equal to the interval (,,0. In this case the ratio
of the length of Q,0 to [ is equal to the ratio of the areas of T’ and T,., and hence
it is larger than Sy/S.

The distance between points @,, and Qn+1 on the side of Py, divided by the
length /5 of the pencil, is, up to an integer factor, equal to r, /72. This immediately
implies that 7; and ry are commensurate, since otherwise the points (,, would be
everywhere dense on L. Let r be the least common multiple of r; and ry. The
points ¢, divide the side of P, into r/ry equal parts. Now, if I' = lary /7 does
not exceed the length ! of L, then there exists an n € 7 such that @ belongs
to L and the length of ),,O does not exceed I'. In view of what was said above,
'/l > S4/S. Since ly/l < ko, we arrive at the required estimate r/ry < koS/Sp.
The similar estimate for r/ry can be obtained by interchanging P, and P, in the
above reasoning.

All pencils of periodic trajectories in a single direction can be arranged in a
sequence Pr, Py, ..., Py, where each pencil, from P, onwards, is adjacent (that is,
has a common saddle connection on its boundary) to some previous one. Let
is.... 7% be the ratios of the length to the width of P, ..., P;. Using what was
proved above, by induction with respect to i we find that the least common multiple

of the numbers r,...,r; (1 <i< k) exceeds each of these numbers by at most a

LCM(ry,...,7r¢)

factor C*=1, €' = koS/Sy. Since k < ko, we have < C*~1 where

Ty
the constant C*0 =1 is independent of the direction.

Taking into account Lemma 3.9, Propositions 6.1 and 6.2 imply that for any
vector T parallel to a saddle connection, the stabilizer I'(w) contains an element a
such that av = o, Thus, I'(w) is a sufficiently rich group.

Proposition 6.3. Suppose that the planar structure w has property A. Let T be a
vector not parallel to any saddle connection. Then the geodesic flow on M in the
direction U is strongly ergodic.

Proof. We prove this by contradiction. We assume that the geodesic flow on M in
the direction v is not strongly ergodic. Since ¥ is not parallel to a saddle connection,
this flow must be minimal, hence we can use Theorem 3.11. So, for € > 0 we can
find an ly = lp(£) such that for all [ > I, there is a saddle connection L; - of length
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at most ! and whose projection on the direction @ perpendicular to T has length
less than £/1. Let L' be the shortest saddle connection that we can take for Ly e,
and let h be its projection on the direction % (h < e/lp). Let L' be the saddle
connection L;, ., where [} = ¢/h. Its projection on the direction % is smaller than
g/l; = h, so, by the choice of L', the saddle connection L” is not shorter than L.
This implies that they are not parallel.

Let I, " be the lengths of L', L" let o', o be the angles they form with
the direction v, and let a be the angle between the saddle connections themselves
(a, !, € [0,7/2]). We have: I} 21" > 1I',0 < a < o +a'". By construction,
sina’ = h/l', sina” < h/l". On the other hand, the projection of L" on the
direction perpendicular to L' is at least w’ (the width of some pencil of periodic
trajectories parallel to L’). The proof of Proposition 6.1 implies that w' > C/l',
where C' is a constant depending on the planar structure only. As a result we find
that sina > }L—,l > # Since %[3 <sinB € B for 0 < 8 < n/2, we obtain:

C<,- < a<a u<2_. / T 2h /1 1
AT <sina<a<a+a’ < ;(sm(r + sin o )<7(l7+l7)’

whence o] 5 A
C< v =250y < e,
T w1l £

Thus, € > 7C, that is, € cannot be made arbitrarily small, contradicting the
assumption. This proves the proposition.

We summarize the results obtained in this subsection.

Proposition 6.4. A planar structure having property A satisfies the Veech
alternative.

So, from the point of view of the behaviour of geodesic flows, planar structures
having property A do not differ from planar structures having a lattice stabilizer.
A difference between them will be established in the next subsection.

6.2. Property B. We will first prove certain assertions concerning lattices in
SL(2,R) that will be used in the proof of Theorem 6.8.

Definition 6.3. A non-zero vector v € R? is called a parabolic vector of a discrete
subgroup I' € SL(2,R) if av =7 for some a € I", a # 1.

The subgroup I' acts in a natural way on the plane R?. We denote by I'v the
orbit of a vector ¥ # 0 under this action.

Lemma 6.5. If 7 is a parabolic vector for T, then the orbit I is discrete.

Proof. So, av = v for some a € I', a # 1. We assume that v,7 — W as i = oo for
a sequence {v;} C I" and some @ € R?>. We put a; = 'yia'yfl, vV = YU, U = Vi,
where & is a vector orthogonal to ¥. We find that a;v; = ¥;, a;u; = U; +ov;, a € R.
Since the lengths of the vectors 7; are bounded above and all +; preserve area, the
length of the projection of w; on the direction orthogonal to 7; is bounded below by a
positive constant. This implies that the sequence {a;} is bounded in SL{2, R). Since
I is discrete, there are only finitely many distinct a;. Without loss of generality
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we may assume that all a; coincide. Since a; # 1 and a;7; = 7;, we find that
the vectors 7; are collinear. We put b; = viy1y; L. then b;u; = Viv1 = AiU;, with
Ai # 0. If |A;] < 1, the sequence of operators bl'a;b; " tends to the identity operator
as n — +oo; if [A;] > 1, we have to take n — —oo. Both cases contradict the
discreteness of I', hence |A;| = 1. Then all terms of the sequence {v;7}, from some
term onwards, coincide (with @), which proves that I'v is discrete.

Lemma 6.6. Let ' be o lattice in SL(2,R). If T is a parabolic vector for I', then
the orbit T'D is discrete, otherwise 0 is a limit point of it. The number of discrete
orbits, considered up to multiplication by a scalar, is finite.

Proof. Let ¥ be a parabolic vector for I', that is, av = ¥ for some a € T, a # 1.
Since I is a lattice, a is conjugate to a power of one of a finite number of elements
ar,...,ax € T\ {1} (see [16]). So, yay~! = a? for some v € T, n € Z and some 1,
1 <@ < k. Then v € T'v is an eigenvector of a;. So, the orbit of a parabolic vector
coincides, up to multiplication by a scalar, with one of the orbits I'ty, ..., Dy, where
vy, ..., 0k are the eigenvectors of the operators a1,...,ar. Lemma 6.5 asserts that
these orbits are discrete.

Now, let 7 be a non-parabolic vector for I'. Without loss of generality we may
assume that v is vertical (in fact, let b € SL(2,R) be the operator mapping ¥ to
a vertical ve( tor; then by is a non-parabolic vector for the lattice I'; = bI'b71,

and T';(bv) = b(I'v)). In this case, by Lemma 3.7, gty; — h as i = oo, where
t/2

{t;} is some sequence of numbers tending to +oo, gt = (eO 6_2/2), {v} CT,

h € SL(2,R). Hence, '»_lg_“ﬂ — hv as i@ = oo. The vector ¥ is vertical, so

g~hw = et/%p. Since e/ — 00 as i — 0o, the sequence {7y, 'T} tends to the zero

vector. Moreover, all its terms belong to the orbit I'z.

Lemma 6.7. A discrete subgroup I' C SL(2,R) is a lattice if and only if we can
choose finitely many parabolic vectors vy, ..., Ty in it and for each a € SL(2,R) we
can find o vector v € I't;, 1 € i < k, such that |av| < C, where C is a constant
independent of a.

Proof. Let ' be a lattice in SL(2,R). We will use the notations introduced in the
proof of Lemma 3.7. Let ; (1 < ¢ < k) be the image of a horizontal vector under
the action of the rotation r;. Then a;U; = +7;, a?v; = v;, and a? € T, a? # 1, that
is, T; is a parabolic vector for T'.

We fix a point zp € H?. For any a € SL(2,R) we can find a v € T such that
the point (ya)zp belongs to the fundamental polygon D. Then (ya)zo belongs
to the compact set K or to a wedge r;(II(¢;; «;, 8i)). In the latter case a power
of a; maps the point (ya)zp into the wedge r;(Il(¢;;0,8; — a;)). Any point of
this wedge can be mapped into the compact set ri(ﬁ(ci; 0,83 — @;)) by means of
the operator gi’"" = 7'ig"tri_1, where t > 0 depends on the point. Thus, for any
a € SL(2,R) we can find a v € T, an index i, 1 < i < k, and a number ¢t > 0
such that (g:t"/a)zo belongs to a compact set K C H? which does not depend
on a. Consequently, « = v~ 'gls, where s belongs to the set K; C SL(2,R) of

1

operators mapping zq into K (clearly, K, is compact). Replacing a by a™! in the
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above reasoning, we find that a can be written in the form a = s_lgi_tfy, with
yel, s € Ki,1 <i<k t>0 Weputv = '%;. Then ¥ € I't; and
at = s g, ' = s (e t/?7;) = e ¥/2(s7'%;). Since s lies in a compact subset of
SL(2,R), the quantity |s~'7;| is bounded by a constant C which does not depend
on s and 4, that is, {a¥| = e~ t/?|s '7;| < e/ . C < C. This proves one assertion
in the lemma.

We now assume that I is a discrete subgroup of SL(2, R) for which we can choose
finitely many parabolic vectors vy, ..., 7, in accordance with the conditions of the
lemma. Let aq,...,a; be non-identity operators in I' such that a;v; =v;,1 <z < k.
Let r; (1 <4 < k) be the rotation operators mapping the horizontal vector to ¥;;

then 7':1(117'1' = ((1] ”17 >, with a; # 0. By requirement, for each a € SL(2,R) we

can find a v € [ and an index 4, 1 < 4 < k. such that |ayv;| < C, where C is
a constant. We denote by bu; a vector orthogonal to 7; and of the same length.
Clearly, a;it; = U; +«;;, so for some n € Z the length of the projection of the vector
avalu; on the direction of the vector aya}®; = avy¥; does not exceed |oy| - |ayvy|.
We put ¢! = 7',g'1‘,._1: then ¢'v; = et/ 2y, glu; = e~t/?7;, and for some t > 0 we
have |ayal'g!w;| = C. Moreover, the length of the projection of ayalglw; on the
direction of the vector aval'glw; does not exceed e ™2 |a;|-|ay®;| < |ay|-C. On the
other hand, the length of its projection on the orthogonal direction is [v;} - |[@;|/C =
2/C, since ayalg! € SL(2,R). Thus, |avalglt;| < (jas?C? + |T)i|2/Cz)1/2,
which does not exceed some constant. Consequently, aya?g! belongs to a compact
subset of SL(2, R).

What was said above implies that each a € SL(2,R) can be written as a = ygls,
with vy € T, 1 <7 <k, t 2 0, and s belonging to the compact set K; C SL(2,R).
We fix a point zg € H2. For any s € K, the point sz; belongs to the compact
set K C H?, which does not depend on s. We now choose ¢ > 0 so small that
K c ﬂj::_,l ri(TI(¢)). Since gtz € ri(I(c)) for ¢t > 0, if z € r;(II(c)) we find that
v Nazy) = gf(sz) € r(I(c)). An arbitrary point z € H* can be written as azq,
a € SL(2,R), so, under the action of an element of I it is mapped into one of the
sets 7 (IT(¢)). Applying now some power of a; we can map this point into the wedge
i (11(¢; 0, |e¢;])). The non-Buclidean area of cach wedge is finite (see [16]). In view
of the discreteness of I' there is thus a fundamental domain of finite area for its
action on H?, that is, ' is a lattice.

T

Theorem 6.8. A planar structure has property B if and only if its stabilizer is a
lattice.

Proof. The group of affine automorphisms of the planar structure w acts in a natural
manner on the set of saddle connections and on the set of w-triangles.

Lemma 6.9. If the stabilizer ['(w) of a planar structure w is a lattice, then the
number of orbits of the action on each of the sets listed above is finite.

Proof. Let @ be a vector in R? that is a development of a saddle connection of w.
Then for any a € T'(w) the vector a¥ is also a development of a saddle connection.
Since there do not exist arbitrarily short saddle connections, 0 cannot be a limit
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point for the orbit I'(w)v, and by Lemma 6.6, av = v for some a € T'(w), a # 1.
In addition we can choose finitely many vectors 7, ..., 7,, independent of ¥, such
that the orbit I'(w)7 contains a vector parallel to one of these. Thus, using an affine
automorphism, any saddle connection of w can be mapped to a saddle connection
parallel to one of the vectors ¥y, ...,7,. There are only finitely many such saddle
connections.

We now consider an arbitrary w-triangle 7. By an affine automorphism of the
planar structure it can be transformed to an w-triangle 77 with one of its sides,
denoted by L, parallel to some 7; (1 < i < n). Let a; # 1 be an element of I'(w)
for which a;U; = 7;. Applying to T7 some power of the affine automorphism with
linear part a;, we obtain an w-triangle T3 with side L for which one of the angles
at this side is larger than a certain constant «; > 0. This constant depends on a;.
Since the area of T5 is bounded (by the area of M), this implies that the lengths
of the sides of T5 are bounded by a constant depending on L. Since L is one of
finitely many saddle connections, an arbitrary w-triangle can be transformed by an
affine automorphism to an w-triangle whose side lengths are bounded by a constant.
There are only finitely many such w-triangles.

Since the area of an w-triangle does not change under an affine automorphism, the
above lemma immediately implies that a planar structure with a lattice stabilizer
has the property B.

We now turn to the second part of the assertion of the theorem. We assume
that the planar structure w has the property B. We choose an arbitrary direction
7 parallel to a saddle connection. By Proposition 6.1, the flow in the direction T
splits into finitely many periodic pencils Py, ..., P,. Let wy,...,w; be the widths
of these pencils.

Lemma 6.10. The sequence wy, ..., wy coincides, up to multiplication of all terms
by a scalar, with one of finitely many sequences, independent of .

Proof. If the pencils P, and P; are adjacent (have a common saddle connection on
their boundary), then w;/w; is the ratio of the areas of certain w-triangles, so it
can take only finitely many values. Further, the pencils P;,..., P, can be ordered
in such a way that each of them, from the second onwards, is adjacent to at least
one of the previous pencils. Hence by induction on k we find that the sequence
wy, ..., w coincides, up to multiplication by a scalar, with one of finitely many
sequences. To finish the proof we need to note that the number & of pencils is
bounded by a constant not depending on T.

We now consider a pair of directions (U1,72) parallel to saddle connections and
giving the standard orientation in R?. The pencils of periodic trajectories parallel
to 7y and Uy intersect, giving parallelograms. We will say that the parallelogram
o is right-, left-, up-, or down-adjacent to a parallelogram p if we can go from p to
py by moving along the vectors 7, —71, va, or —va.

Let IT' and II” be the sets of parallelograms corresponding to the pairs of
directions (7},75) and (v{,v4). We call such pairs equivalent if there is a
bijection f: IT' — 1" such that the parallelogram f(p:) is right-, left-, up-, or down-
adjacent to f(p) if p, is adjacent to p with respect to the corresponding side.

s S T —— sm—
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The pairs (v],75) and (v}, 75) are called strongly equivalent if the bijection f can
be chosen such that a parallelogram with sides w;, wy becomes a parallelogram
with sides aw,, Sw,, where a and 3 are constants.

We assume that a pair of directions (71,72) is such that we can find saddie
connections L; and L, parallel to these directions that are two of the sides of
an w-triangle. The proof of Proposition 6.1 then implies that the area of each
parallelogram corresponding to (v;,72) is bounded below by a constant C' > 0
which depends on w only. This implies that the number of parallelograms does
not exceed S/C, where S is the area of M. Clearly, (71,72) is now equivalent to
one of finitely many pairs. Furthermore, Lemma 6.10 implies that this pair is also
strongly equivalent to finitely many pairs.

The proof that I'(w) is a lattice can now be obtained from Lemma 6.7. In
fact, by Lemmas 3.8, 3.9 and Proposition 6.2, the parabolic directions of I'(w)
are precisely the directions parallel to saddle connections. Furthermore, for any
parabolic direction %; we can find a direction T, such that the pair (71,72) gives
the standard orientation in R? and there exist saddle connections L; and L, parallel
to 7, and T, that are sides of a single w-triangle. What was said above implies that
the pair (7,7, ) is strongly equivalent to some pair (ﬁgi) , T)'gi)) from a finite number of
,(Ugm),ﬁgm) ). The definition of strong equivalence now implies
that there is an element v € I'(w) mapping v, to 5&1) and 73 to Egi). Thus, the orbit
I'(w)¥; of a parabolic vector coincides, up to multiplication by a scalar, with one

pairs (D'(ll) . Egl)), .

of the orbits F(u)ﬁ(li)‘ 1 € i < m. This implies that the sequence SC(w) consists of
finitely many orbits. Using this and Proposition 3.2, on the basis of Lemma 6.7 we
may conclude that T'(w) is a lattice.

Since property A is weaker than property B, Theorems 6.4 and 6.8 imply Veech’s
theorem.

Proposition 6.2 and Theorem 6.8 indicate that, probably, property A implies
property B. It would be interesting to show this. If, however, this conjecture is
not true, the construction of a corresponding counterexample (that is, of a planar
structure having property A but not property B) would be no less interesting.
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