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Mathematical Notes, Vol. 62, No. 1, 1997

Billiards in Rational Polygons: Periodic Trajectories, Symmetries,
and d-Stability

Ya. B. Vorobets UDC 517.938

ABSTRACT. Periodic trajectories of billiards in rational polygons satisfying the Veech alternative, in particular,
in right triangles with an acute angle of the form =/n with integer n are considered. The properties under
investigation include: symmetry of periodic trajectories, asymptotics of the number of trajectories whose length
does not exceed a certain value, stability of periodic billiard trajectories under small deformations of the polygon.

KEY worps: billiards in rational polygons, periodic trajectories, Veech alternative.

Introduction

A billiard flow in a polygon @ describes the rectilinear motion of a point in @ with a unit speed
reflecting in the boundary of the polygon according to the law “the angle of incidence equals the angle
of reflection”. The phase space of the flow is the direct product of Q and the circle of “unit velocities”
S! with proper identifications on its boundary implied by the law of reflection. The projection of a phase
curve on the polygon is called a billiard trajectory. A billiard trajectory that hits a vertex of Q is said
to be singular, its continuation beyond this vertex, in general, is undefined. A trajectory that starts at
a vertex of the polygon and arrives at another vertex (that is, doubly singular) is called a generalized
diagonal.

In what follows, we assume that Q is a rational polygon, that is, the angle between any two of its
sides is rationally commensurable with x. In this case, all segments of a fixed billiard trajectory are
parallel only to a finite number of directions. As a result, the phase space Q x S? falls into invariant
surfaces “pasted” from a finite number of copies of the polygon @ (of the form Q x {7}, 7€ S'). Al
of these surfaces except two are homeomorphic to the same connected compact orientable surface M and
consistently define a plane structure on it, that is, a Riemannian metric of zero curvature with a finite
number of conic singular points, the angle at each of them being a multiple of 27 (for details see, for
instance, [1]).

Little is known about billiard flows in general polygons. At the same time, billiards in rational polygons
are fairly well studied.

In this article we consider a number of questions about periodic billiard trajectories in a rational polygon
whose corresponding surface with plane structure has a rich group of affine symmetries (for details see §1).
These polygons were studied in [1]. Their main property is the alternative discovered by Veech [2]: each
nonsingular trajectory of the billiard is either periodic or equidistributed in the polygon.

We shall consider a number of questions including the symmetry of periodic trajectories, the asymptotics
of the number of periodic trajectories of length not greater than R, deformational stability of periodic
trajectories in a polygon (that is, stability under small deformations of the polygon). One of the results
of this paper (on the deformational instability of all periodic billiard trajectories in a right triangle with
an acute angle of the form 7/(2n), where n is an integer) was announced in [3].

§1. Affine symmetries

Let us refine the definition of a plane structure given in the introduction. We deal with a Riemannian
metric on a surface M of curvature zero that has a finite number of singular points, each of which is a conic
singularity with an angle of 2rm, where m is a positive integer (the multiplicity of the singular point).
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‘In addition, an arbitrary nonsingular point z € M has a neighborhood U, isometric to a domain in R2.

Each isometric embedding of this neighborhood into R? specifies a local Cartesian frame in U,. The
. frames specified by different embeddings differ from one another by rotation, translation, and, possibly,
reflection. Since the holonomy group of the Riemannian metric in question is trivial, we can choose local
Cartesian coordinates in the neighborhood of each nonsingular point in such a way that in the intersection
of any two neighborhoods the corresponding coordinates only differ by a translation. Such a set of local
y  frames will be called Cartesian coordinates on the surface M. In what follows, by a plane structure we
¥ shall understand a Riemannian metric of the form described above supplied with Cartesian coordinates.

By means of Cartesian coordinates, each curve on the surface M can be carried over to R?, which
yields its development, a plane curve defined uniquely up to all possible translations in R%. Further we
shall consider periodic geodesics on M and saddle links, geodesic segments connecting singular points.
Their developments are line segments.

Definition 1.1. An affine symmetry of a plane structure w on a surface M is a homeomorphism of M
onto itself that takes singular points into singular points and is an affine mapping in the local Cartesian
frame corresponding to w near each nonsingular point.

For any affine symmetry, its linear (homogeneous) part, a 2x2 matrix with determinant %1, is uniquely
defined. The group I'(w) of linear parts of affine symmetries preserving the orientation of the surface is
called the stabslizer of the plane structure w. The stabilizer is a discrete subgroup in SL(2, R) (see (1, 2]).
It is usual to say that the plane structure w has a large number of affine symmetries if ['(w) is a lattice
in the group SL(2, R), that is, if the homogeneous space SL(2, R)/T(w) is of finite volume.

Suppose that I'(w) contains a certain lattice I'. Since the stabilizer is a discrete subgroup in SL(2, R),
it is also a lattice, so I is a subgroup of finite index in I'(w). Below we give a sufficient condition for T
to coincide with the entire stabilizer I'(w). As a preliminary, let us introduce a number of definitions.
Let T € S! be a vector parallel to a saddle link of the plane structure w. According to the Veech
alternative (see [1, 2]), all nonsingular geodesics parallel to T are periodic and constitute a finite number
of bundles separated by saddle links. The set of the lengths of these bundles will be called the I-sequence
for the direction T; the set of the ratios of these lengths to the respective bundle widths will be called the
r-sequence for T. All elements of the r-sequence are commensurable with one another [1].

Further, recall that one of the important parameters of an arbitrary lattice T' € SL(2, R) is the number
of its cusps (parabolic vertices), that is, the greatest number of vertices that a fundamental polygon for
the action of T' on the hyperbolic plane may have on the absolute if no two such vertices are identified by
this action (see [4]).

Proposition 1.1. Suppose that the stabilizer T'(w) of a plane structure w contains a lattice T' with k
cusps. Suppose that there are exactly k directions Ty,...,0k € S ! parallel to saddle links of the structure
w such that for each pair of directions T; and T; (i # j) the corresponding r- and l-sequences are distinct
up to permutations of their terms and up to multiplication of all of them by the same factor. Then MNw)=T
if any element a € T'(w) such that a¥ = £71 belongs to T'. The last condition holds, for instance, if the
following requirements are satisfied simultaneously:

(i) T contains an operator b such that b5, = v and buy = Uy + 701, where U is a unit vector
orthogonal to T; and r is the smallest positive number evenly divisible by each element of the
r-sequence for the direction 7 ;

(ii) for a certain 1 # 0, any permutation of the (nonempty) set of saddle links with development

: 15, can be realized by affine symmetries of w with linear parts from T';

] (iii) at least one saddle link with development 1T, belongs to the common part of the boundary of

two noncongruent periodic bundles, or all these saddle links are taken into themselves by a certain
affine symmetry with linear part —1, —1 € T;

(iv) all the saddle links parallel to ¥, lie in the set U obtained from the surface M after deleting
from it those bundles of periodic geodesics parallel to T; whose boundary component contains
two saddle links of the same length, and deleting the singular points; in addition, each connected
component of the set U contains a saddle link with development [v; .
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Proof. We begin with the following remark. Let 7 be a vector parallel to a saddle link of the structure
w, and let ¥ be an element of I'(w). Then the bundles of periodic geodesics parallel to ¥ can be taken
into the bundles of periodic geodesics parallel to % by an affine symmetry with linear part v. It follows
that the /-sequences for the directions ¥ and 7V coincide up to a permutation and the multiplication of
all their terms by the same factor. The r-sequences for T and 4% have the same property.

Since T is a lattice in SL(2,R) with k cusps, we can choose k nonzero vectors €;,...,ex such that
for any vector invariant under the action of a nonidentical element of the lattice there is an element of T
that takes it to a vector collinear to one of the chosen vectors (see [1, Sec. 3.4]). According to the Veech
alternative {1, Theorem 3.4], for the vector T parallel to a saddle link, there exists an element a ¢ Iw),
a # 1, such that a% = %. The group I' is of finite index in I'(w), and therefore only a finite number of
cosets ', al', a?T, . .. are distinct from one another. This means that a® € T for a certain integer n > 0.
We have a7 = T and o™ # 1, so the vector T is taken to a vector collinear to a certain &, by an operator
from T'. In view of the property of I- and r-sequences specified above, the vectors ¥; and 75 (i #7)
cannot be taken to vectors collinear to the same €,. It follows that we can choose the vectors Ty,..., T
for €,...,&.

Let ¢ be an arbitrary affine symmetry of the plane structure w with linear part a. As we have seen
above, for some v € T, the vector (va)v: is collinear to a certain T;. From the assumptions of the
proposition and the properties of I- and r-sequences, it follows that ¥; = 7, that is, (va)?; = AT;. The
operator ya takes the development of a saddle link to the development of a saddle link, and since the
number of the saddle links parallel to Uy is finite, we have A = +1. But va ¢ T', whenever a ¢ T,
completing the proof of the first statement.

We proceed to the second statement. Consider an affine symmetry ¢ with linear part a, av; = +7;. Let
us prove that a € I'. In view of condition (ii) there is an affine symmetry ¢; with linear part a; € T such
that ;¢ takes each saddle link with development [v; into itself, the equation (a;a)3; = +%; being true.
Moreover, the symmetry ¢; can be chosen in such a way that (a;a)7; = ;. Indeed, if (aia)t; = -7,
then any two bundles of periodic geodesics having a common saddle link with development Iv; on the
boundary are taken to each other under the affine symmetry 3. This means that these bundles are
congruent. In this case we can “fix up” the symmetry ¢; using condition (iii).

Now consider an arbitrary bundle of periodic trajectories parallel to ;. If there is a saddle link on
its boundary invariant under the symmetry ;¢ then the same will be true for all the saddle links that
bound this bundle on the same side. And if no two saddle links that bound the bundle on the other side
are equal in length, then ;¢ leaves them invariant as well. In view of condition (iv) and the fact that
¢1¢ leaves fixed the saddle links with development I%;, it follows that w1 leaves fixed all the saddle
links parallel to ;. In this case the symmetry ¢1¢ takes any bundle of geodesics parallel to 7; to itself,
so 1ts linear part is a power of the operator b from condition (i), that is, it belongs to T'. Then a isin I'
as well, completing the proof. [J

Below we consider plane structures canonically constructed from rational triangles two of whose angles
are of the form w/n and 7/m, where n and m are positive integers. The corresponding plane structure
and the surface on which it is defined are denoted by &n,m and My, n, respectively. The surface M, ,, is
“pasted” from regular n- and m-gons with equal side length so that each side of each n-gon is identified
with a side of a certain m-gon (see [1]). At the same time, all vertices of the regular polygons are identified,
forming a singular point of the plane structure &y ,,. Besides this singular point, there are others, the
centers of the polygons. The multiplicity of any of these is 1, so they can be thought of as nonsingular
points. As a result, we get a new plane structure, which will be denoted by wn m. The sides of the regular
polygons are the shortest saddle links of the plane structure wp, . Cartesian coordinates on the surface
M, m will be chosen in such a way that one of these saddle links be horizontal.

On the face of it, the distinction between the plane structures Wn,m and Wn m is purely formal.
However, their stabilizers can differ significantly (see §3).

Let k be an integer, and let ! be an integer or oo, both numbers being no smaller than 2 with at least
one of them strictly greater than 2. By T k,1 we shall denote the subgroup in SL(2, R) generated by the
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elements

where
T
kalzcosk+:os,’ koo_cosk;i-l:ctgl
sin ’ sin ¥ 2k

The group Tk, is a lattice (see [1]). It has one cusp if [ is finite and two cusps if [ = o00.

Proposition 1.2. The following equations hold:

(1) T(wn,n) = T(w2,n) = Tn,2 for an odd n;
(2) T(wn,n) = [(w2,n) = Tnj2,00 for an even n >6;
(3) T(wn,2n) =Ta,3 for any n.

Proof. The fact that each of the stabilizers in question contains the corresponding lattice was proved
in [1, Theorem 4.4]. To prove that the groups coincide, we shall use Proposition 1.1. In all the cases
the horizontal direction will be taken as ¥;. The lattice I'n/2,00 has two cusps; therefore, for the plane
structures wn,n and w2,n (with an even n) we shall choose the direction of T, to make an angleof = /n with
the horizontal direction. Then for the plane structures of the form wy n, Where n is divisible by 4, all the
terms in the r-sequence corresponding to the direction vy are equal, and in the r-sequence corresponding
to the direction 7; one of the terms is half of any of the other if n > 8. As for the plane structures wn,n
(with an even n) and wy,, (with an even n not divisible by 4), their r-sequences corresponding to the
directions 7; and v, are of different length (to be exact, the first sequence is one term shorter than the
second). Thus we have checked one of the conditions of Proposition 1.1.

Now let us check conditions (i)~ (iv). The validity of condition (i) for all the cases in question was
established in [1], namely, it is shown there that one of the generators of the corresponding lattice I' =
T'a,m, the operator 7a,m, can be taken as the operator b. Further, let [ be equal to the length of the
shortest saddle link. Then w, 5 (for any n) has one saddle link with the development [T1, and wn,n (for
an even n), as well as wn 2n, has two saddle links taken one into the other by an affine symmetry with
linear part +1. Notice that —1€Tln,m. The saddle links of the plane structure wn, 2a with development
15, bound two noncongruent bundles, those of all the other plane structures are taken into themselves by
an affine symmetry with linear part —1. Finally, only the plane structure wp,n with n divisible by 4
has a periodic bundle parallel to ¥; whose boundary component contains two saddle links of the same
length. This is the bundle containing the centers of the regular n-gons that form the surface My n; after
it is deleted, the surface (without the singular point) falls into two connected components each of which
contains a saddle link with development [T;. Thus conditions (i)-(iv) are verified. O

§2. Symmetric periodic trajectories

As was noticed by Stepin (see, for instance, [5]), a billiard trajectory in a rational polygon starting
perpendicularly to a side either is periodic or is a generalized diagonal. The argument can be carried over
from billiard trajectories to trajectories (that is, geodesics) of plane structures.

Definition 2.1. An affine reflection of a plane structure is an affine symmetry whose linear part is an
operator of reflection in a line (not necessarily orthogonal) and which has at least one nonsingular fixed

point.

Definition 2.2. A trajectory of a plane structure is said to be symmetric if there exists an affine
reflection that takes a vector parallel to this trajectory into the opposite one and leaves invariant at least
one point of the trajectory.

Proposition 2.1. A symmetric trajectory of a plane structure is either periodic or a saddle link.
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Proof. Let L be a symmetric trajectory with direction vector v, and let a point z € L and affine
reflection S be such that Sz = z and S7 = —-%. Further, suppose that % is a vector taken by the
reflection S into itself and L, is the trajectory passing through z parallel to the vector @. Each point
y € Ly is invariant under the reflection S (by the way, this implies that the closure of L; has no interior
points, that is, L; is finite). The trajectory L meets L, at the point z. If L is not a saddle link, it will
meet L; once again, say, at a certain point y. Denote by [z,y] the segment of the trajectory L from the
point z to the point y. Since ST = —7, the segments S([z, y]) and [z, y] are adjacent segments of L,
the entire trajectory L being the union of these segments. It follows that the trajectory L is periodic. O

The assertion about billiard trajectories starting perpendicularly to a side of the polygon turns out
to be a particular case of the one proved above. Indeed, let z be a point on a side a of a rational
polygon @, and let L be the billiard trajectory starting from z perpendicularly to the side a. Consider
a surface M with plane structure into which the polygon @ can be embedded. The billiard trajectory L
can be straightened into a trajectory L; of the plane structure. The reflection in the side a generates an
affine (orthogonal) reflection S of the plane structure. The trajectory L; is obviously symmetric under
the reflection S, so by the proposition proved above it is either periodic or a saddle link. It follows that
the billiard trajectory L either is periodic or is a generalized diagonal.

In §1 we considered plane structures whose stabilizer is a lattice. In this case Proposition 2.1 can be
conversed.

Proposition 2.2. For plane structures of the form Wn,n; W2,n, O Wy 2n, €ach periodic trajectory and
each saddle link is symmetric.

Proof. Suppose that S is an affine reflection and T is an affine symmetry of a plane structure, and
let L be a trajectory symmetric under the reflection S. Then the tra Jectory T(L) is symmetric under the
affine reflection TST~!. Thus an affine symmetry takes symmetric trajectories into symmetric trajectories.
However, it follows from the proofs of Propositions 1.1 and 1.2 that any finite trajectory (a periodic one
or a saddle link) of any plane structure of the form indicated in the statement is transformed by an affine
symmetry either into & trajectory parallel to the shortest saddle link or, for the plane structures wy , and
w2,n With an even n, into a trajectory parallel to or making an angle of 7/n with the shortest saddle
link. But all these trajectories are symmetric and the corresponding affine reflection can be chosen to be
orthogonal. O

§3. Bundles of periodic billiard trajectories

Let @ be a rational polygon, and let w be the plane structure corresponding to @ on the surface M.
In [1] we considered the values No(R), N(R), S(R), N*(R), and S *(R) denoting the number of saddle
links of w of length not greater than R, the number and total area of “one-run” bundles of periodic
trajectories of length not greater than R, and the same number and total area again, but with allowance
made for multiple bundles (trajectories in a multiple bundle are trajectories of smaller length covered
several times), respectively. By analogy, let us introduce the values JVO(R), N (R), §(R), N *(R), and
S *(R) characterizing a billiard flow in Q. Here generalized diagonals are counted instead of saddle links,
and bundles of periodic billiard trajectories instead of bundles of periodic geodesics. By the area of a
one-run bundle of periodic trajectories here we understand the product of its length by its width (it is
greater than the area of the subset of @ occupied by the trajectories of the flow). The area of a multiple
bundle is, by definition, the area of the corresponding one-run bundle.

Denote by k the order of the group K generated by the linear parts of reflections in the sides of the
polygon Q. The natural projection 7: M — Q is k-sheeted; therefore, a generalized diagonal of the
polygon, as a rule, is the image of k saddle links of the plane structure w. Similarly, a bundle of periodic
billiard trajectories is the image of k periodic bundles of trajectories of the geodesic flow on M (of the same
area). The exception is the generalized diagonals and periodic trajectories whose segments are oriented
along the fixed vectors of the reflections from K. These generalized diagonals and periodic bundles (finite
in number) can have k/2 or k preimages. (Notice that a periodic bundle with k/2 preimages contains
one trajectory half as long as the bundle; it is a periodic trajectory with an odd number of segments [5].)
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Thus we have N 5
No(R) = kNo(R), N(R) = kN(R),
and so on up to an additive constant. If the stabilizer T'(w) is a lattice, then, by (1, Theorem 3.13], all

the values 5 _ _ _ 5
No(R), N(R), S(R), N*(R), S%(R)

are asymptotically of the form cR? + o(R?) with a positive constant ¢ as R — oo. I the stabilizer
is a lattice for a plane structure that differs from w only by removable singularities, then, as in the
previous case, the values S(R) and S*(R) will have the same asymptotics (because the values S(R) and
S*(R) corresponding to the plane structure do not depend on removable singularities); however, this is
not necessarily true for the other values.

Proposition 3.1. The stabilizers of the plane structures &a n and Wn,n are lattices for any even n > 2
and are not lattices for any odd n > 3.

Proof. Suppose that n is even. Let us show that the lattice T'n/2,00, the stabilizer of the plane
structures wy,n and wp,n, is the stabilizer for Wy n and Wn,n, as well. The fact that the plane structures
B3, and @yn,n allow for an affine symmetry with linear part o, /, follows from their construction. Further,
let ¢ be an affine symmetry of the plane structure wa n (or Wn,n) With linear part Tn/2,00 that leaves
invariant horizontal saddle links. It will suffice to show that it is also an affine symmetry of the structure
Wa,n (@n,n, respectively), that is, takes the singular points of the latter one to another. The plane
structure @n n differs from wyq,n in two singular points, the centers of the n-gons constituting the surface
My n. If n is not divisible by 4, they lie on the horizontal saddle links of w, n and ¢ leaves them fixed.
If n is divisible by 4, they belong to the trajectory that divides in half one of the horizontal bundles of
trajectories of wn,n; the distance between the points is half the length of the bundle, so they are swapped
by ¢. Exactly the same way, the singular points of Wz n not on the horizontal saddle links of the plane
structure wq,, are located on the trajectories that divide in half the bundles of horizontal trajectories
of wz,n, two points on a trajectory; the distance between the points in such a pair is half the length of
the trajectory and the symmetry ¢ swaps the points in each pair.

If n is odd, the singular points of &n,n which are the centers of the regular n-gons constituting My n,
split the horizontal bundle of trajectories of the plane structure wp,n = W2,n to which they belong into
three parts of widths

dsin(/(2n)), d(sin(37/(2n) — sin(7/(2n))), gdsin(7/(2n)),

where d is the distance from the center of the regular n-gon to its vertex. The ratio of the first two of
these values is equal to

. 3r . L [ J T

sin 37 —sin 3~ _251n2n cos -9 T
— = =5 = 2cos —,
sin 5 sin 7~ n

which is an irrational number for n > 3. The singular points of the plane structure &z 5 distinct from
the singular points of Wy n divide in half all the bundles of horizontal trajectories of the plane structure
Wn,n, SO for Wo n, as well as for Wp,n, the length-to-width ratios for horizontal bundles are not pairwise
commensurable. Thus the Veech alternative does not hold and the stabilizers T'(@z,) and ['(&n,n) are
not lattices. 0O

Corollary 3.1. For a right triangle with an acute angle of /n and an isosceles triangle with base

angles of 7/n, where n is an even number, the values No(R), N(R), S(R), N*(R), and S*(R) have
asymptotics of the form cR? + o R?), where c is a positive constant, as R — oo.

§4. d-unstable billiard trajectories

In connection with bifurcations of periodic trajectories of billiards in polygons, Stepin introduced the
notion of deformational stability (d-stability) of these trajectories. In [5] a number of statements on
deformational stability or instability of periodic billiard trajectories in various polygons were proved.
Below we prove another result along this line.
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Definition 4.1. A periodic billiard trajectory in a polygon @ is called d-stable if for any € > 0 in
each polygon obtained from @ by a small enough variation of its sides and angles, there is a periodic
billiard trajectory with the same number of segments entirely contained within the e-neighborhood of the
initial trajectory.-

Lemma 4.1 [5]. Let ay, ..., a; be the sides of the polygon Q and let W = a;, - -~ a;_. be a cyclic word
associated with a periodic billiard trajectory (that is, the succession of sides visited by a point moving
along the trajectory). If m is even, then this trajectory is d-stable if and only if the alternating sum
+ai, —ai, +- - — ai, is equal to 0 (as an element of the free Z-module with the basis a; ey @)

Lemma 4.2. Suppose that the measures of the angles at two vertices joined by the generalized diagonal
bounding a bundle of periodic billiard trajectories in a polygon are of the form =/ (2n), n € N. Then all
the trajectories in this bundle are d-unstable.

Proof. Label the polygon’s sides arbitrarily. Let L be the generalized diagonal in question; denote
by A and B its endpoints and suppose that the sides visited by a point running along L from A to B
are, in succession, 1, 2, ..., Zm- Let the angles of the polygon at the vertices A and B be 7/(2n) and
7 /(21), respectively. A periodic billiard trajectory from the bundle bounded by the generalized diagonal L
can be described as follows. The billiard ball, starting its motion near the vertex A , moves in parallel to
the generalized diagonal L to its end, rebounds 2! times alternately in the sides ¢ and d issuing from
the vertex B of the polygon, then returns moving in parallel to L again, but on the other side of the
diagonal, and, at the end of its route, rebounds 2n times in the sides a and b issuing from the vertex A
to end up at its starting position. Thus the word associated with the periodic trajectory is

W =zyz9--- xm(cd)lzm -+ z2z1(ab)™

(the sth power of a subword in this notation stands for its i-fold iteration). The alternating sum of the

letters in the word W equals
S=(-1)"l(c~d)+n(a—0b).

If the vertices A and B do not coincide, this sum is not zero, because in this case at least three of the
sides a, b, c, and d are distinct from one another. The case A = B requires a more detailed treatment.
In this case, the first segment of the periodic trajectory and its (m + 1)st segment, which are parallel to
the first and (m + 1)st (that is, the last) segments of L, respectively, are located to the left or to the
right of the corresponding segments of L (the left and right sides are determined by the initial orientation
of L). More exactly, both segments of the trajectory are on the same side (both on the left or both on the
right) of the segments of the generalized diagonal if m is even, and on different sides if m is odd. Since
the first segment of the billiard trajectory starts on the side b and its (m + 1)st segment ends on the side
¢, the first segment of L issues from the vertex A and its (m + 1)st segment enters this vertex, we see
that either a = ¢ and b = d (for an even m) or a =d and b = ¢ (for an odd m). In any case,

(-1)™(c—d)=a-b, S=2n(a—5)#0.

Thus S # 0, and so, according to Lemma 4.1, the periodic billiard trajectory in the bundle bounded
by the generalized diagonal L is d-unstable. [

Theorem 4.1. In aright triangle with an acute angle of 7/(2n), n € N, all periodic billiard trajectories
are d-unstable.

Proof. Recall that the surface with plane structure corresponding to a right triangle with an acute
angle of w/(2n), n € N, is obtained from the regular 2n-gon by identification of its opposite sides. Singular
points of the plane structure correspond to the vertices of the triangle. In particular, the vertices with the
angles 7/2 and 7/(2n) turn into n+ 1 singular points of multiplicity 1 (the center of the 2n-gon and the
midpoints of its sides), and the third vertex of the triangle turns into one more singular point p, whose
multiplicity is greater than 1 for n > 3. It follows from Propositions 1.2 and 3.1 (and their proofs) that
any bundle of periodic geodesics of the plane structure in question can be transformed under a certain
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fiine symmetry ¢ into a bundle parallel to a side or a diagonal of the 2n-gon. Each of these bundles, as is
easy to see, has a saddle link (on the boundary) none of whose endpoints coincides with p. Now we notice
that for n > 3 the symmetry ¢ takes the point p to itself (because in this case p is the only singular
point with multiplicity greater than 1), and for n =2 or 3 it can be chosen in such a way as to leave the
point p fixed. Therefore, any bundle of periodic geodesics has a similar saddle link on the boundary. It
follows that each bundle of periodic billiard trajectories in the initial triangle has a generalized diagonal
on the boundary both of whose endpoints are at the vertices of the angles measuring 7/2 or 7/(2n). By
Lemma 4.2, this completes the proof. U

In [5] a different method was used to prove the absence of d-stable periodic billiard trajectories in three
polygons: in a rectangle and in the right triangles with an acute angle of /4 or = /6. We see that for the
first two of these polygons this statement follows from Lemma 4.2; besides, for the triangles it turns out
to be a particular case of Theorem 4.1.
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