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that is, the Gaussian curvature at p measures how different from the identity
is parallel transport along small circles about p.

EXERCISES

1) (The flat torus). Let f: R? = R* be given by
f(z,y) = (cosz,sinz,cosy,siny), (z,y) € R

Prove that:
a) f is an immersion and f(R?) is homeomorphic to a torus,
b) The frame e, ='az, ey = gf in f(Rz) C R'is orthonormal in the
metric of f(Rg) induced by R*. Compute ﬂ" 5 5]’ ool fhy Connoshon
c¢) The Gaussian curvature of the induced metric is identically zero. O(-écfm .
2) (The hyperbolic plane). Let H? be the upper half-plane, that is,

H? = {(z,y) € R*y > 0}

Consider in H? the following inner product: If (z,y) € H? and u,v €
T, H?, then
{isvis—= Sl
»"Iip yg )

where u - v is the canonical inner product of R2. Prove that this is a
Riemannian metric in H? whose Gaussian curvature is X = —1; with this
Riemannian metric H? is called the hyperbolic plane.

Hint: Choose the orthonormal frame e; =3'a‘(, €2 =44, where {a1,a2} is
the canonical frame of R2.

3) Let M2 be a Riemannian manifold of dimension two. Let f:U ¢ R? = M
be a parametrization of M? such that f, = df(ﬁ—‘) and f, = df(a%),
(u,v) € U, are orthogonal. Set E = (f,, f,) and G = (f,, fu). Choose an
orthonormal frame e, = f,/ VE, ey = fo/ VG in U. Show that;

a) The associated coframe is given by

' Y
W\ = vV Edu, V) = vV Gdv.
b) The connection form is given by

W _(VE)y, | (VG
V\q—— \/6 d’u-l--ﬁd'v.

Hint: Use the fact that V\%\(e;) = d:'-y\-t(el,eg), 1=1,2,




6)

7)

8)
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¢) The Gaussian curvature of M 2is

o1 [(WEL) , (WO
VEG\\ VG ), \ VE ],
Let S2 = {(z,9,2) € R%z? + y* + 2% = 1}. Prove that there exists no
differentiable nonzero vector field X on S2.

Hint: Assume the existence of such a field X. Let e; = X/ [X| e consider
the orthonormal oriented frame {e1.e2}. Then dwi2 = —Kwi Awz2 = —0,

hence
areaSg=/a=— dw12=—/ wyg =0,
s2 s? 857 -

which is a contradiction.
Consider R? with the following inner product: If p = (z,y) € R? and
u,v € T,,Rz, then

(’U,’U)p = '(':gi(z:)—;-)—g'a

where © - v is the canonical inner product of R? and g: R? - Risa
differentiable positive function. Prove that the Gaussian curvature of this
metric is

K = g(gzz + 9u) — (92 + 93)-

Let M2 C R? be a surface with the induced metric. Let p € M?, z € T,M?
and Y be a vector field tangent to M? . Show that

(V.Y)(p) = projection onto TpM of (ﬂ%";(_s)l) (0),
where a:I — M is a differentiable curve, s € I, and % is the usual
derivative of vectors in R3. Conclude that a curve (s) in M, parametrized
by the arc length s, is a geodesic in M if and only if the “acceleration”
vector d-;;} in R? is everywhere perpendicular to M.
Let $2 = {(z,y,2) € R} 22+ 2 + 22 = 1} be the unit sphere with the
metric induced from R3. Show that:
a) The geodesics of S2 are its great circles,
b) The antipodal map A:S? — $2 given by A(z,y,2) = (—z,~y,—2) is
an isometry,
¢) The projective plane P2(R) (cf. Example 7 of Chapter 2) can be given a
Riemannian metric such that the canonical projection m: S2 — P?(R)
is a local isometry (that is, each p € S? has a neighborhood V such
that the restriction 7/V is an isometry).
Let M? be a Riemannian manifold (of dimension two). The goal of the
exercise is to show that the Gaussian curvature K of M is identically zero
if and only if M is locally euclidean, that is, there exist local coordinates



