

Figure 1.13. Stereographic projection.

Problems

- 1-1. Let X be the set of all points $(x,y) \in \mathbb{R}^2$ such that $y=\pm 1$, and let M be the quotient of X by the equivalence relation generated by $(x,-1) \sim (x,1)$ for all $x \neq 0$. Show that M is locally Euclidean and second countable, but not Hausdorff. (This space is called the *line with two origins*.)
- 1-2. Show that the disjoint union of uncountably many copies of \mathbb{R} is locally Euclidean and Hausdorff, but not second countable.
- 1-3. Let M be a nonempty topological manifold of dimension $n \ge 1$. If M has a smooth structure, show that it has uncountably many distinct ones. [Hint: Begin by constructing homeomorphisms from \mathbb{B}^n to itself that are smooth on $\mathbb{B}^n \setminus \{0\}$.]
- 1-4. If k is an integer between 0 and $\min(m, n)$, show that the set of $m \times n$ matrices whose rank is at least k is an open submanifold of $M(m \times n, \mathbb{R})$. Show that this is *not* true if "at least k" is replaced by "equal to k."
- 1-5. Let $N=(0,\ldots,0,1)$ be the "north pole" in $\mathbb{S}^n\subset\mathbb{R}^{n+1}$, and let S=-N be the "south pole." Define stereographic projection $\sigma\colon\mathbb{S}^n\setminus\{N\}\to\mathbb{R}^n$ by

$$\sigma(x^1, ..., x^{n+1}) = \frac{(x^1, ..., x^n)}{1 - x^{n+1}}.$$

Let $\widetilde{\sigma}(x) = -\sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(a) For any $x \in \mathbb{S}^n \setminus \{N\}$, show that $\sigma(x)$ is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$, identified with \mathbb{R}^n in the obvious way (Figure 1.13). Similarly, show that $\widetilde{\sigma}(x)$ is the point where the line through S

and x intersects the same subspace. (For this reason, $\tilde{\sigma}$ is called stereographic projection from the south pole.)

(b) Show that σ is bijective, and

$$\sigma^{-1}(u^1,\ldots,u^n) = \frac{(2u^1,\ldots,2u^n,|u|^2-1)}{|u|^2+1}$$

- (c) Compute the transition map $\widetilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \widetilde{\sigma})$ defines a smooth structure on \mathbb{S}^n . (The coordinates defined by σ or $\widetilde{\sigma}$ are called *stereographic coordinates*.)
- (d) Show that this smooth structure is the same as the one defined in Example 1.20.
- 1-6. By identifying \mathbb{R}^2 with \mathbb{C} in the usual way, we can think of the unit circle \mathbb{S}^1 as a subset of the complex plane. An angle function on a subset $U \subset \mathbb{S}^1$ is a continuous function $\theta \colon U \to \mathbb{R}$ such that $e^{i\theta(p)} = p$ for all $p \in U$. Show that there exists an angle function θ on an open subset $U \subset \mathbb{S}^1$ if and only if $U \neq \mathbb{S}^1$. For any such angle function, show that (U, θ) is a smooth coordinate chart for \mathbb{S}^1 with its standard smooth structure.
- 1-7. Complex projective n-space, denoted by \mathbb{CP}^n , is the set of 1-dimensional complex-linear subspaces of \mathbb{C}^{n+1} , with the quotient topology inherited from the natural projection $\pi \colon \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$. Show that \mathbb{CP}^n is a compact 2n-dimensional topological manifold, and show how to give it a smooth structure analogous to the one we constructed for \mathbb{RP}^n . (We identify \mathbb{C}^{n+1} with \mathbb{R}^{2n+2} via $(x^1+iy^1,\ldots,x^{n+1}+iy^{n+1}) \leftrightarrow (x^1,y^1,\ldots,x^{n+1},y^{n+1})$.)
- -8. Let k and n be integers such that 0 < k < n, and let $P, Q \subset \mathbb{R}^n$ be the subspaces spanned by (e_1, \ldots, e_k) and (e_{k+1}, \ldots, e_n) , respectively, where e_i is the ith standard basis vector. For any k-dimensional subspace $S \subset \mathbb{R}^n$ that has trivial intersection with Q, show that the coordinate representation $\varphi(S)$ constructed in Example 1.24 is the unique $(n-k) \times k$ matrix B such that S is spanned by the columns of the matrix $\binom{I_k}{B}$, where I_k denotes the $k \times k$ identity matrix.
- 1-9. Let $M = \mathbb{B}^n$, the closed unit ball in \mathbb{R}^n . Show that M is a topological manifold with boundary, and that it can be given a natural smooth structure in which each point in \mathbb{S}^{n-1} is a boundary point and each point in \mathbb{B}^n is an interior point.

2000