
Principal Invariants of Jacobi CurvesAndrei Agrachev1 and Igor Zelenko21 S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy and Steklov MathematicalInstitute, ul. Gubkina 8, 117966 Moscow, Russia; email: agrachev@sissa.it2 Department of Mathematics, Technion-Israel Institute of Technology,Haifa 32000, Israel; email: zigor@techunix.technion.ac.ilAbstract. Jacobi curves are far going generalizations of the spaces of \Jacobi�elds" along Riemannian geodesics. Actually, Jacobi curves are curves in the La-grange Grassmannians. Di�erential geometry of these curves provides basic feed-back or gauge invariants for a wide class of smooth control systems and geometricstructures. In the present paper we mainly discuss two principal invariants: thegeneralized Ricci curvature, which is an invariant of the parametrized curve in theLagrange Grassmannian providing the curve with a natural projective structure,and a fundamental form, which is a 4-order di�erential on the curve. This paperis a continuation of the works [1, 2], where Jacobi curves were de�ned, although itcan be read independently.1 IntroductionSuppose M is a smooth manifold and � : T �M ! M is the cotangentbundle to M: Let H be a codimension 1 submanifold in T �M such that H istransversal to T �qM; 8q 2M ; then Hq = H\TqM is a smooth hypersurface inTqM . Let & be the canonical Liouville form on T �qM , &� = � � ��, � 2 T �M ,and � = d& be the standard symplectic structure on T �M ; then �jH is acorank 1 closed 2-form. The kernels of (�jH )�, � 2 H are transversal to T �qM;q 2M ; these kernels form a line distribution in H and de�ne a characteristic1-foliation C of H. Leaves of this foliation are characteristic curves of �jH .Suppose 
 is a segment of a characteristic curve and O
 is a neighbor-hood of 
 such that N = O
=(CjO
 ) is a well-de�ned smooth manifold. Thequotient manifold N is in fact a symplectic manifold endowed with a sym-plectic structure �� induced by �jH . Let � : O
 ! N be the canonical fac-torization; then �(Hq \O
), q 2M , are Lagrangian submanifolds in N . LetL(T
N ) be the Lagrange Grassmannian of the symplectic space T
N , i.e.L(T
N ) = f� � T
N : �\ = �g, where D\ = fe 2 T
N : ��(e;D) = 0g,8D � T
N . Jacobi curve is the mapping� 7! ��(T�H�(�)); � 2 
;from 
 to L(T
N ).Jacobi curves are curves in the Lagrange Grassmannians. They are in-variants of the hypersurface H in the cotangent bundle. In particular, any



2 A. Agrachev, I. Zelenkodi�erential invariant of the curves in the Lagrange Grassmannian by the ac-tion of the linear Symplectic Group produces a well-de�ned function on H.Set W = T
N and note that the tangent space T�L(W ) to the LagrangeGrassmannian at the point � can be naturally identi�ed with the space ofquadratic forms on the linear space � � W . Namely, take a curve �(t) 2L(W ) with �(0) = �. Given some vector l 2 �, take a curve l(�) in W suchthat l(t) 2 �(t) for all t and l(0) = l. De�ne the quadratic form q�(�)(l) =��( ddt l(0); l). Using the fact that the spaces �(t) are Lagrangian, i.e. �(t)\ =�(t), it is easy to see that the form q�(�)(l) depends only on ddt�(0). So, wehave the map from T�L(W ) to the space of quadratic forms on �. A simplecounting of dimension shows that this mapping is a bijection.Proposition 1. Tangent vectors to the Jacobi curve J
 at a point J
(�);� 2 
, are equivalent (under linear substitutions of variables in the correspon-dent quadratic forms) to the \second fundamental form" of the hypersurfaceH�(�) � T ��(�)M at the point �.In particular, the velocity of J
 at � is a sign-de�nite quadratic form if andonly if the hypersurface H�(�) is strongly convex at �.A similar construction can be done for a submanifold of codimension 2 inT �M . In the codimension 2 case characteristic curves do not �ll the wholesubmanifold; they are concentrated in the characteristic variety consisting ofthe points, where the restriction of � to the submanifold is degenerate.We are mainly interested in submanifolds that are dual objects to smoothcontrol systems. Here we call a smooth control system any submanifold V �TM , transversal to �bers. Let Vq = V \TqM ; The \dual" normal variety H1and abnormal variety H0 are de�ned as follows:H1 = Sq2Mf� 2 T �qM : 9v 2 Vq ; h�; vi = 1; h�; TvVqi = 0g;H0 = Sq2Mf� 2 T �qM n 0 : 9v 2 Vq; h�; vi = h�; TvVqi = 0g:These varieties are not, in general, smooth manifolds; they may havesingularities, which we do not discuss here. Anyway, one can obtain a lot ofinformation on the original system just studying smooth parts of H1, H0.Characteristic curves of �j1H (�j0H ) are associated with normal (abnormal)extremals of the control system V . The corresponding Jacobi curves admit apurely variational construction in terms of the original control system and ina very general setting (singularities included), see [1, 2, 3].One of the varieties H1;H0 can be empty. In particular, if Vq = @Wq ,where Wq is a convex set and 0 2 intWq , then H0 = ;. Moreover, in this casethe Liouville form never vanishes on the tangent lines to the characteristiccurves of �jH1 , and any characteristic curve 
 has a canonical parametrizationby the rule h&; _
i = 1.



Principal Invariants of Jacobi Curves 3If subsets Vq � TqM are conical, �Vq = Vq, 8� > 0, then, in contrast tothe previous case, H1 = ; and & vanishes on the tangent lines to the charac-teristic curves of �jH0 . The characteristic curves are actually unparametrized.If Vq are compact, then H1 has codimension 1 in T �M , while H0 hascodimension � 2 in all nontrivial cases.The rank of the \second fundamental form" of the submanifolds H1q andH0q of T �qM at any point is no greater than dimVq . Indeed, let � 2 H1q ; then� 2 (TvVq)?, h�; vi = 1, for some v 2 Vq . We have � + (TvVq +Rv)? � H1q .So � belongs to an a�ne subspace of dimension n � dimVq � 1, which iscontained in H1q . For � 2 H0q , 9 v 2 Vq such that � 2 (TvVq)?, h�; vi = 0.Then the a�ne subspace �+ (TvVq +Rv)? is contained in H0q .Suppose thatH1 has codimension 1 in T �M and 
 is a characteristic curveof �jH1 . Then the velocity of the Jacobi curve � 7! J
(�), � 2 
, has rank nogreater than dimV�(�) (see proposition 1). The same is true for the Jacobicurves associated with characteristic curves of �jH0 , if H0 has codimension2. Dimension of Vq is the number of inputs or control parameters in thecontrol system. Less inputs means more \nonholonomic constraints" on thesystem. It happens that the rank of velocity of any Jacobi curve generatedby the system never exceeds the number of inputs.2 Derivative CurveLet � be a Lagrangian subspace of W , i.e. � 2 L(W ). For any w 2 �, thelinear form ��(�; w) vanishes on � and thus de�nes a linear form on W=�. Thenondegeneracy of �� implies that the relation w 7! �(�; w), w 2 �, induces acanonical isomorphism � �= (W=�)� and, by the conjugation, �� �= W=�.We set �t = f� 2 L(W ) : �\� = 0g, an open everywhere dense subset ofL(W ). Let Sym2(�) be the space of self-adjoint linear mappings from �� to�; this notation re
ects the fact that Sym2(�) is the space of quadratic formson �� that is the symmetric square of �. �t possesses a canonical structureof an a�ne space over the linear space Sym2(�) = Sym2((W=�)�). Indeed,for any � 2 �t and coset (w+�) 2 W=�, the intersection �\ (w+�) of thelinear subspace � and the a�ne subspace w+� in W consists of exactly onepoint. To a pair �;� 2 �t there corresponds a mapping (���) : W=�! �,where (� ��)(w + �) def= � \ (w + �)�� \ (w + �):It is easy to check that the identi�cation W=� = �� makes (� � �) a self-adjoint mapping from �� to �. Moreover, given � 2 �t, the correspondence� 7! (� ��) is a one-to-one mapping of �t onto Sym2(�) and the axiomsof the a�ne space are obviously satis�ed.Fixing � 2 �t one obtains a canonical identi�cation � �= W=� = ��. Inparticular, (� ��) 2 Sym2(�) turns into the mapping from � to �. For the



4 A. Agrachev, I. Zelenkolast linear mapping we will use the notation h�;�;�i : �! �. In fact, thismapping has a much more straightforward description. Namely, the relationsW = �� �, � \ � = 0, imply that � is the graph of a linear mapping from� to �. Actually, it is the graph of the mapping h�;�;�i. In particular,kerh�;�;�i = �\ � . If �\ � = 0, then h�; �;�i= h�;�;�i�1.Let us give coordinate representations of the introduced objects. We mayassume that W = Rm�Rm = f(x; y) : x; y 2 Rmg;��((x1; y1); (x2; y2)) = hx1; y2i � hx2; y1i; � = Rm� 0; � = 0�Rm:Then any � 2 �t takes the form � = f(x; Sx) : x 2 Rng, where S is asymmetric m�m matrix. The operator h�; �;�i : �! � is represented bythe matrix S, while the operator h�;�;�i is represented by the matrix S�1.The coordinates in � induce the identi�cation of Sym2� with the space ofsymmetricm�m matrices. �t is an a�ne subspace over Sym2�; we �x � asthe origin in this a�ne subspace and thus obtain a coordinatization of �t bysymmetricm�m matrices. In particular, the \point" � = f(x; Sx) : x 2 Rngin �t is represented by the matrix S�1.A subspace �0 = f(x; S0x) : x 2 Rng is transversal to � if and only ifdet(S � S0) 6= 0. Let us pick coordinates fxg in �0 and �x � as the origin inthe a�ne space �t0 . In the induced coordinatization of �t0 the \point" � isrepresented by the matrix (S � S0)�1.Let t 7! �(t) be a smooth curve in L(W ). We say that the curve �(�) isample at � if 9k > 0 such that for any representative �k� (�) of the k-jet of�(�) at � , 9t such that �k� (t) \ �(� ) = 0. The curve �(�) is called ample if itis ample at any point.We have given an intrinsic de�nition of an ample curve. In coordinates ittakes the following form: the curve t 7! f(x; Stx) : x 2 Rng is ample at � ifand only if the function t 7! det(St � S� ) has a root of �nite order at � .Assume that �(�) is ample at � . Then �(t) 2 �(� )t for all t from apunctured neighborhood of � . We obtain the curve t 7! �(t) 2 �(� )t inthe a�ne space �(� )t with the pole at � . Fixing an \origin" in �(� )t wemake �(�) a vector function with values in Sym2(�) and with the pole at� . Such a vector function admits the expansion in the Laurent series at � .Obviously, only free term in the Laurent expansion depends on the choiceof the \origin" we did to identify the a�ne space with the linear one. Moreprecisely, the addition of a vector to the \origin" results in the addition ofthe same vector to the free term in the Laurent expansion. In other words,for the Laurent expansion of a curve in an a�ne space, the free term of theexpansion is a point of this a�ne space while all other terms are elements ofthe corresponding linear space. In particular,�(t) � �0(� ) + 1Xi=�li6=0 (t � � )iQi(� ); (1)



Principal Invariants of Jacobi Curves 5where �0(� ) 2 �(� )t, Qi(� ) 2 Sym2�(� ).Assume that the curve �(�) is ample. Then �0(� ) 2 �(� )t is de�ned forall � . The curve � 7! �0(� ) is called the derivative curve of �(�).Another characterization of �0(� ) can be done in terms of the curvest 7! h�;�(t); �(� )i in the linear space Hom(�;�(� )), � 2 �(� )t. Thesecurves have poles at � . The Laurent expansion at t = � of the vector functiont 7! h�;�(t); �(� )i has zero free term if and only if � = �0(� ).The coordinate version of the series (2.1) is the Laurent expansion of thematrix-valued function t 7! (St � S� )�1 at t = � , where �(t) = f(x; Stx) :x 2 Rng.3 Curvature operator and regular curves.Using derivative curve one can construct an operator invariant of thecurve �(t) at any its point. Namely, take velocities _�(t) and _�0(t) of �(t)and its derivative curve �0(t). Note that _�(t) is linear operator from �(t)to �(t)� and _�0(t) is linear operator from �0(t) to �0(t)�. Since the form� de�nes the canonical isomorphism between �0(t) and �(t)�, the followingoperator R(t) : �(t)! �(t) can be de�ned:R(t) = � _�0(t) � _�(t) (2)This operator is called curvature operator of � at t. Note that in thecase of Riemannian geometry the operator R(t) is similar to the so-calledRicci operator v ! Rr( _
(t); v) _
(t), which appears in the classical Jacobiequation r _
(t)r _
(t)V +Rr( _
(t); V ) _
(t) = 0 for Jacobi vector �elds V alongthe geodesic 
(t) (here Rr is curvature tensor of Levi-Civita connection r),see [1]. This is the reason for the sign \�" in (2).The curvature operator can be e�ectively used in the case of so-calledregular curves. The curve �(t) in Lagrange Grassmannian is called regular, ifthe quadratic form _�(t) is nondegenerated for all t. Suppose that the curve�(�) is regular and has a coordinate representation �(t) = f(x; Stx) : x 2 Rng,S� = 0. Then the function t 7! S�1t has a simple pole at t = � and one canget the following formula for the curvature operator (see [1]):R(t) = �(2S0t)�1S00t �0 � �(2S0t)�1S00t �2 (3)Note that the right-hand side of (3) is a matrix analog of so-called Schwarzderivative or Schwarzian . Let us recall that the di�erential operator:S: ' 7! 13� ddt� '002'0 )�� '002'0�2� = 16 '(3)'0 � 14�'00'0 �2; (4)acting on scalar function ' is called Schwarzian. The operator Sis character-ized by the following remarkable property: General solution of the equationS' = � w.r.t ' is a M�obius transformation (with constant coe�cients) of



6 A. Agrachev, I. Zelenkosome particular solution of this equation. The matrix analog of this operatorhas similar property, concerning \matrix M�obius transformation" of the type(AS+B)(CS+D)�1. It implies that in the regular case the curvature opera-tor R(t) determines the curve completely up to a symplectic transformation.4 Expansion of the cross-ratio and Ricci curvature.For the nonregular curve �(t) = f(x; Stx) : x 2 Rng, the function t 7!(St � S� )�1 has a pole of order greater than 1 at � and it is much moredi�cult to compute its Laurent expansion. In particular, as we will see laterin the nonregular case the curvature operator does not determine the curveup to a symplectic transformation. However, using the notion of cross-ratioit is possible to construct numerical invariants for a very nonrestrictive classof curves.Suppose that �0, �1, �2, and �3 are Lagrangian subspaces of W and�0 \ �2 = �1 \ �2 = �3 \ �0 = 0. We have h�0; �1; �2i : �0 ! �2,h�2; �3; �0i : �2 ! �0. The cross-ratio h�0; �1; �2; �3i of four "points" �0,�1, �2, and �3 in the Lagrange Grassmannian is, by de�nition, the followinglinear operator in �2:h�0; �1; �2; �3i= h�0; �1; �2ih�2; �3; �0i: (5)This notion is a \matrix" analog of the classical cross-ratio of four pointsin the projective line. Indeed, let �i = f(x; Six) : x 2 Rng, then, in coordi-nates fxg, the cross-ratio takes the form:h�0; �1; �2; �3i= (S2 � S1)�1(S1 � S0)(S0 � S3)�1(S3 � S2) (6)By construction, all coe�cients of the characteristic polynomial ofh�0; �1; �2; �3i are invariants of four subspaces �0; �1; �2, and �3.Now we are going to show how to use the cross-ratio in order to constructinvariants of the curve �(t) in the Lagrange Grassmannian. Let, as before,t 7! f(x; Stx) : x 2 Rng be the coordinate representation of a germ of thecurve �(�).Assumption 1 For all parameters t1 the functions t ! det(St � St1)have at t = t1 zero of the same �nite order k.By the above the function (t0; t1; t2; t3) ! deth�(t0); �(t1); �(t2); �(t3)iis symplectic invariant of the curve �(t). Using this fact, let us try to �ndsymplectic invariants of �(t) that are functions of t. For this it is very con-venient to introduce the following functionG(t0; t1; t2; t3) = ln �������deth�(t0); �(t1); �(t2); �(t3)iht0; t1; t2; t3ik ������� ; (7)



Principal Invariants of Jacobi Curves 7where ht0; t1; t2; t3i= (t0�t1)(t2�t3)(t1�t2)(t3�t0) is the usual cross-ratio of four numberst0; t1; t2,and t3. The function G(t0; t1; t2; t3) is also a symplectic invariant of�(t). It can be easily expanded in formalTaylor series at any \diagonal" point(t; t; t; t) and the coe�cients of this expansion are invariants of the germ of�(�) at t.Indeed, by Assumption 1, we have:det(St0 � St1) = (t0 � t1)kX(t0; t1); X(t; t) 6= 0 (8)for any t. It follows that X(t0; t1) is a symmetric function (changing the orderin (8) we obtain that X can be symmetric or antisymmetric, but the last caseis impossible by the fact that X(t; t) 6= 0 ). De�ne also the following functionf(t0; t1) = lnjX(t0; t1)j (9)This function is also symmetric, so it can be expanded in the formalTaylorseries at the point (t; t) in the following way:f(t0; t1) � 1Xi;j=0�i;j(t)(t0 � t)i(t1 � t)j ; �i;j(t) = �j;i(t) (10)One can easily obtain the following lemma, using the fact thatG(t0; t1; t2; t3) = f(t0; t1)� f(t1; t2) + f(t2; t3)� f(t3; t0)Lemma 1. For any t the function G(t0; t1; t2; t3) has the following formalTaylor expansion at the point (t; t; t; t):G(t0; t1; t2; t3) � 1Xi;j=1�i;j(t)(�i0 � �i2)(�j1 � �j3); (11)where �l = tl � t, l = 0; 1; 2; 3.From (11) it follows that all coe�cients �i;j(t), i; j � 1, are symplecticinvariants of the curve �(t).De�nition 1. The �rst appearing coe�cient �1;1(t) is called Ricci curvatureof �(t).In the sequel the Ricci curvature is denoted by �(t). Note that, by a directcomputation, one can get the following relation between �(� ) and curvatureoperator R(� ) for the regular curve: �(� ) = 13tr R(� ). Actually , this relationjusti�es the name Ricci curvature for the invariant �(t).In some cases we are interested in symplectic invariants of unparametrizedcurves in Lagrange Grassmannian (i.e., of one-dimensional submanifolds inLagrange Grassmannian). For example, so-called abnormal extremals of vec-tor distributions and consequently their Jacobi curves a priori have no specialparametrizations.



8 A. Agrachev, I. ZelenkoNow we want to show how, using the Ricci curvature, one can de�ne acanonical projective structure on the unparametrized curve �(�). For this letus check how the Ricci curvature is transformed by a reparametrization ofthe curve �(t).Let t = '(� ) be a reparametrization and let ��(� ) = �('(� )). Denote by Gthe function playing for ��(� ) the same role as the function G for �(t). Thenfrom (7) it follows thatG(�0; �1; �2; �3) = G(t0; t1; t2; t3)+k ln� ['(�0); '(�1); '(�2); '(�3)][�0; �1; �2; �3] � ;(12)where ti = '(�i), i = 0; 1; 2; 3. By direct computation it can be shown that thefunction (�0; �1; �2; �3) 7! ln� ['(�0);'(�1);'(�2);'(�3)][�0 ;�1 ;�2;�3] � has the following Taylorexpansion up to the order two at the point (�; �; �; � ):ln� ['(�0); '(�1); '(�2); '(�3)][�0; �1; �2; �3] � = S'(� )(�0� �2)(�1 � �3) + : : : ; (13)where S' is Schwarzian de�ned by (4) and �i = �i � � , i = 0; 1; 2; 3.Suppose for simplicity that in the original parameter t the Ricci curvature�(t) � 0 and denote by ��(� ) the Ricci curvature of the curve ��(� ). Then from(11), (12), and (13) it follows easily that:��(� ) = kS'(� ): (14)Conversely, if the Ricci curvature �(t) of the curve �(t) is not identicallyzero we can �nd at least locally (i.e., in a neighbourhood of given point) areparametrization t = '(� ) such that ��(� ) � 0 (from (14) it follows that inthis case '(� ) has to satisfy the equation S('�1)(t) = �(t)k )The set of all parametrization of �(�) with Ricci curvature identicallyequal to zero de�nes a projective structure on �(�) (any two parametrizationfrom this set are transformed one to another by M�obius transformation). Wecall it the canonical projective structure of the curve �(�). The parameters ofthe canonical projective structure will be called projective parameters.5 Fundamental form of the unparametrized curve.The Ricci curvature �(�) is the �rst coe�cient in the Taylor expansionof the function G at the point (t; t; t; t). The analysis of the next terms ofthis expansion gives the way to �nd other invariants of the curve �(�) thatdo not depend on �(t). In this section we show how to �nd candidates forthe "second" invariant of �(�) and then we construct a special form on un-parametrized curve �(�) (namely, the di�erential of order four on �(�) ), whichwe call the fundamental form of the curve �(�).First note that analyzing the expansion (10) one can easily obtain thefollowing lemma



Principal Invariants of Jacobi Curves 9Lemma 2. Let �i;j(t) be as in expansion (10). Then the following relationholds�0i;j(t) = (i + 1)�i+1;j(t) + (j + 1)�i;j+1(t) (15)In particular, from (15) it follows easily that�2;1(t) = 14�0(t); �2;2(t) = 18�00(t) � 32�3;1(t) (16)These relations imply that the function �3;1(t) is a candidate for thesecond invariant (as well as the function �2;2(t)).Now let t be a projective parameter on �(�). Then by de�nition �(t) � 0,and by (16) �2;1(t) � 0 and �2;2(t) = �32�3;1(t). This together with (11) andthe fact that �3;1(t) = �1;3(t) implies that the function G(t0; t1; t2; t3) hasthe following Taylor expansion up to the order four at the point (t; t; t; t):G(t0; t1; t2; t3) = �3;1(t)p4(�0; �1; �2; �3) + : : : ; (17)where �i = ti � t, i = 0; 1; 2; 3, and p4(�0; �1; �2; �3) is a homogeneous poly-nomial of degree four (more precisely, p4(�0; �1; �2; �3) = (�30 � �32)(�1 � �3) +(�0 � �2)(�31 � �33) � 32 (�20 � �22)(�21 � �23)) .Let � be another projective parameter on �(�) (i.e., t = '(� ) = a�+bc�+d ) anddenote by ��3;1(� ) the function that plays the same role for the curve �('(� ))as the function �3;1(t) for �(t). Then from (12), (17), and the fact that thecross-ratio is preserved by M�obius transformations it follows that��3;1(� )(d� )4 = �3;1(t)(dt)4 (18)It means that the form �3;1(t)(dt)4 does not depend on the choice of theprojective parameter t. We will call this form a fundamental form of the curve�(�).If t is an arbitrary (not necessarily projective) parameter on the curve�(�), then the fundamental form in this parameter has to be of the formA(t)(dt)4, where A(t) is a smooth function (the "density" of the fundamentalform). For projective parameter A(t) = �3;1(t). For arbitrary parameter itcan be shown, using (11), (12), that A(t) = �3;1(t)� 15k�(t)2 � 120�00(t).If A(t) does not change sign, then the canonical length element jA(t)j 14 dtis de�ned on �(�). The corresponding parameter � (i.e., length with respectto this length element) is called a normal parameter (in particular, it impliesthat abnormal extremals of vector distribution may have canonical (normal)parametrization). Calculating the Ricci curvature �n(� ) of �(�) in the normalparameter, we obtain a functional invariant of the unparametrized curve. Wewill call it projective curvature of the unparametrized curve �(�). If t = '(� )is the transition function between a projective parameter t and the normalparameter � , then by (14) it follows that �n(� ) = kS'(� ).Note that all constructions of this section can be done for the curve in theGrassmannian G(m; 2m) ( the set of all m-dimensional subspaces in the 2m-dimensional linear space) instead of Lagrange Grassmannian by the action ofthe group GL(2m) instead of Symplectic Group.



10 A. Agrachev, I. Zelenko6 The method of moving frame.In this section we consider nonregular curves having two functional in-variants and prove that the above de�ned invariants � and A constitute acomplete system of symplectic invariants for these curves (completeness ofthe system of invariants means that the system de�nes the curve uniquely upto a symplectic transformation)Assume that dimension of the symplectic space W is four and considerample curves �(t) in L(W ) such that for any t the velocity _�(t) is a quadraticform of rank 1. Without loss of generality we can assume that _�(t) is nonnega-tive de�nite for any t. Let us �x some parameter � and let f(x; Stx) : x 2 Rngbe a coordinate representation of �(t) such that S� = 0. Since the curve �(t)is ample, the curve S�1t has a pole at � . The velocity ddtS�1t : �(� )� ! �(� ) isa well de�ned self-adjoint operator. Moreover, by our assumptions, ddtS�1t isa nonpositive self-adjoint operator of rank 1. So for t 6= � there exists unique,up to the sign, vector w(t; � ) 2 �(� ) such that for any v 2 �(� )�hv; ddtS�1t vi = �hv; w(t; � )i2 (19)It is clear that the curve t ! w(t; � ) also has the pole at � . Supposethat the order of the pole is equal to l. Denote by u(t; � ) the normalizedcurve t ! u(t; � ) = (t � � )lw(t; � ) and de�ne the following vectors in �(� ):ej(� ) = @j�1@tj�1u(t; � )���t=� .It is not hard to show that the order of pole of t ! w(t; � ) at t = � isequal to l if and only if l is the minimal positive integer such that the vectorse1(� ) and el(� ) are linear independent (in particular, e1(� ) and e2(� ) arelinear independent if and only if l = 2). It implies easily that the set of points� , where the vectors e1(� ) and e2(� ) are linear dependent, is a set of isolatedpoints in R.Assumption 2 �(t) is a curve in L(W ) with dimW = 4 such that forany t the velocity _�(t) is a quadratic form of rank 1 and e1(t); e2(t) are linearindependent.By the above it is easy to see that if �(�) satis�es the previous assumption,then it satis�es Assumption 1 with k = 4. So, the invariants �(�) and A(�)are de�ned for �(�). Note that the curve �(�) can be described by the curvet ! w(t; � ) of the vectors on the plane, i.e. �(�) can be described by twofunctions. The natural question is whether (�(�); A(�)) is a complete systemof symplectic invariants of �(�).Since vector w(t; � ) is de�ned up to the sign, the vector e1(� ) is also de-�ned up to the sign. So, for any � one can take (e1(� ); e2(� )) or (�e1(� );�e2(� ))as the canonical bases on the plane �(� ). Recall that by constructions of thesection 2 for the curve �(�) the derivative curve �0(�) is de�ned and for any �the subspaces �(� ) and �0(� ) are transversal. So, in addition to the vectors



Principal Invariants of Jacobi Curves 11e1(� ); e2(� ) on the plane �(� ), one can choose two vectors f1(� ) and f2(� ) onthe plane �0(� ) such that four vectors �e1(� ); e2(t); f1(� ); f2(� )� constitutesymplectic basis (or Darboux basis) of W (it means that �(fi(� ); ej(� )) =�i;j). So, the curve �(�) de�nes a moving frame �e1(� ); e2(� ); f1(� ); f2(� )�and one can derive the structural equation for this frame:Proposition 2. The frame �e1(� ); e2(� ); f1(� ); f2(� )� satis�es the followingstructural equation:8>>>>>>>><>>>>>>>>: _e1 = 3e2_e2 = 14�e1 + 4f2_f1 = �(3512A� 18�2 + 116�00)e1 � 716�0e2 � 14�f2_f2 = � 716�0e1 � 94�e2 � 3f1 (20)Note that the coe�cients in the equation (20) depend only on � and A andany symplectic basis can be taken as an initial condition of (20). It impliesthe following:Theorem 1. The curve �(�) satisfying Assumption 2 is determined by itsinvariants (�(�); A(�)) uniquely up to the symplectic transformation of W .Remark 1. It can be shown by a direct calculation that the curvature op-erator R(� ) : �(� ) ! �(� ) of the curve �(�) satisfying Assumption 2 hasthe following matrix in the basis (e1(� ); e2(� )): R(� ) = �0 74�0(� )0 9�(� ) �, i.e., Rdepends only on �. This means that in contrast to the regular case, the curva-ture operator does not determine the curve �(�) uniquely up to a symplectictransformation.Theorem 1 implies the following result on unparametrized curves:Theorem 2. Assume that the curve �(�) satis�es Assumption 2 for someparametrization and its fundamental form A(t)(dt)4 does not vanish. Thenthe sign of A(t) and the projective curvature �n(�) determine �(�) uniquelyup to a symplectic transformation of W and a reparametrization.7 Flat curves.The following de�nition is natural.De�nition 2. The curve �(t), satisfying Assumption 2, is called 
at if �(t) �0, A(t) � 0.



12 A. Agrachev, I. ZelenkoAs a consequence of Theorem 1, expansion (11), and structural equation(20) one can obtain the following characterization of the 
at curve:Theorem 3. The curve �(t), satisfying Assumption 2, is 
at if and only ifone of the following condition holds:1) all coe�cients Qi(t) with i > 0 in the Laurent expansion (1) are equalto zero;2) the derivative curve �0(t) is constant, i.e., _�0(t) � 0;3) for any t0; t1; t2; t3det�[�(t0); �(t1); �(t2); �(t3)]� = [t0; t1; t2; t3]4: (21)The conditions 1), 2), and 3) are also equivalent for regular curves inL(W ) with symplectic space W of arbitrary dimension (we only need toreplace the power 4 in (21) by dimW ). In the last case these conditions arealso equivalent to the fact that curvature operator R(t) is identically equalto zero.Conjecture. Suppose that �(t) satis�es Assumption 1. Then the con-ditions 1), 2), and 3), with the power 4 replaced by k in relation (21), areequivalent.If the previous conjecture is true, then one of the conditions 1), 2), or 3)can be taken as a de�nition of the 
at curve.Now let us discuss the notion of 
atness for unparametrized curves.De�nition 3. An unparametrized curve �(�), satisfying Assumption 2 forsome parametrization, is called 
at, if its fundamental form is identicallyzero.It happens that, up to symplectic transformations and reparametrizations,there exists exactly one maximal 
at curve.Theorem 4. There is an embedding of the real projective lineRP1 into L(W )as a 
at closed curve endowed with the canonical projective structure; Maslovindex of this curve equals 2. All other 
at curves are images under symplectictransformations of L(W ) of the segments of this unique one.References1. A.A. Agrachev, R.V. Gamkrelidze, Feedback-invariant optimal control theory -I. Regular extremals, J. Dynamical and Control Systems, 3,1997, No. 3, 343-389.2. A.A. Agrachev, Feedback-invariant optimal control theory - II. Jacobi Curvesfor Singular Extremals, J. Dynamical and Control Systems, 4(1998), No. 4 ,583-604.3. I. Zelenko, Nonregular abnormal extremals of 2-distribution: existence, secondvariation and rigidity, J. Dynamical and Control Systems, 5(1999), No. 3, 347-383.


