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Abstract. Jacobi curves are far going generalizations of the spaces of “Jacobi
fields” along Riemannian geodesics. Actually, Jacobi curves are curves in the La-
grange Grassmannians. Differential geometry of these curves provides basic feed-
back or gauge invariants for a wide class of smooth control systems and geometric
structures. In the present paper we mainly discuss two principal invariants: the
generalized Ricci curvature, which i1s an invariant of the parametrized curve in the
Lagrange Grassmannian providing the curve with a natural projective structure,
and a fundamental form, which is a 4-order differential on the curve. This paper
is a continuation of the works [1, 2], where Jacobi curves were defined, although it
can be read independently.

1 Introduction

Suppose M is a smooth manifold and 7 : T*M — M is the cotangent
bundle to M. Let H be a codimension 1 submanifold in 7 M such that H is
transversal to 77 M, Vg € M; then H, = HN1;M is a smooth hypersurface in
TyM. Let ¢ be the canonical Liouville form on T35 M, ¢y = Aome, A € T" M,
and ¢ = dg be the standard symplectic structure on T*M; then o]y is a
corank 1 closed 2-form. The kernels of (o[ )x, A € H are transversal to 15 M,
q € M ; these kernels form a line distribution in H and define a characteristic
1-foliation C of H. Leaves of this foliation are characteristic curves of o|g.

Suppose v is a segment of a characteristic curve and O is a neighbor-
hood of 4 such that N = O,/(C|o,) is a well-defined smooth manifold. The
quotient manifold N is in fact a symplectic manifold endowed with a sym-
plectic structure & induced by o|g. Let ¢ : Oy — N be the canonical fac-
torization; then ¢(H, N O,), ¢ € M, are Lagrangian submanifolds in N. Let
L(T,N) be the Lagrange Grassmannian of the symplectic space T, N, i.e.
L(TyN) = {A C TyN : A4 = A}, where D* = {e € T, N : 5(e, D) = 0},
VD C Ty N. Jacobi curve is the mapping

A= 0 (ThHr(ny), A€,

from v to L(T, N).
Jacobi curves are curves in the Lagrange Grassmannians. They are in-
variants of the hypersurface H in the cotangent bundle. In particular, any
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differential invariant of the curves in the Lagrange Grassmannian by the ac-
tion of the linear Symplectic Group produces a well-defined function on H.

Set W = T, N and note that the tangent space T4 L(W) to the Lagrange
Grassmannian at the point A can be naturally identified with the space of
quadratic forms on the linear space A C W. Namely, take a curve A(t) €
L(W) with A(0) = A. Given some vector | € A, take a curve [(-) in W such
that {(t) € A(t) for all ¢ and [(0) = [. Define the quadratic form ¢,()(/) =
6’(%1(0), l). Using the fact that the spaces A(t) are Lagrangian, i.e. A(t)4 =
A(t), it is easy to see that the form ¢4 )({) depends only on %A(O). So, we
have the map from T4 L(WW) to the space of quadratic forms on A. A simple
counting of dimension shows that this mapping is a bijection.

Proposition 1. Tangent vectors to the Jacobi curve J, at a point J,(}),
A € 7, are equivalent (under linear substitutions of variables in the correspon-
dent quadratic forms) to the “second fundamental form” of the hypersurface
Hyony C T;(A)M at the point A.

In particular, the velocity of J, at A is a sign-definite quadratic form if and
only if the hypersurface H(y) is strongly convex at A.

A similar construction can be done for a submanifold of codimension 2 in
T*M. In the codimension 2 case characteristic curves do not fill the whole
submanifold; they are concentrated in the characteristic variety consisting of
the points, where the restriction of ¢ to the submanifold is degenerate.

We are mainly interested in submanifolds that are dual objects to smooth
control systems. Here we call a smooth control system any submanifold V' C
TM, transversal to fibers. Let V, = VN T, M; The “dual” normal variety H'
and abnormal variety H® are defined as follows:

H' = UM{/\ eTrM eV, (\v)y=1, (\T,V,) =0},
g€

O = U INETIMN0:30 € Vo (A0 = (A ToVy) = 0},
q

These varieties are not, in general, smooth manifolds; they may have
singularities, which we do not discuss here. Anyway, one can obtain a lot of
information on the original system just studying smooth parts of H', HY.

Characteristic curves of o|}; (o]%) are associated with normal (abnormal)
extremals of the control system V. The corresponding Jacobi curves admit a
purely variational construction in terms of the original control system and in
a very general setting (singularities included), see [1, 2, 3].

One of the varieties H', H” can be empty. In particular, if V, = dW,,
where W, is a convex set and 0 € intW,, then H° = (). Moreover, in this case
the Liouville form never vanishes on the tangent lines to the characteristic
curves of 0| g1, and any characteristic curve v has a canonical parametrization
by the rule {¢,%) = 1.
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If subsets V, C T, M are conical, aV, = V, Va > 0, then, in contrast to
the previous case, H' = § and < vanishes on the tangent lines to the charac-
teristic curves of o|go. The characteristic curves are actually unparametrized.

If V, are compact, then H' has codimension 1 in 7*M, while H° has
codimension > 2 in all nontrivial cases.

The rank of the “second fundamental form” of the submanifolds H} and
H(? of T7 M at any point is no greater than dimVj. Indeed, let A € H;; then
A€ (T, V), (A, v) = 1, for some v € V,. We have A + (T,,V, + Rv)* C H;.
So A belongs to an affine subspace of dimension n — dimV, — 1, which is
contained in H;. For A € H(?, Jv € V, such that A € (T, V,)*, (\,v) = 0.
Then the affine subspace A + (T, V, + Rv)?® is contained in H(?.

Suppose that H*! has codimension 1in 7% M and ¥ is a characteristic curve
of o|g1. Then the velocity of the Jacobi curve A — J,(A), A € v, has rank no
greater than dim Vy(y) (see proposition 1). The same is true for the Jacobi
curves associated with characteristic curves of o|go, if H° has codimension
2.

Dimension of V; is the number of inputs or control parameters in the
control system. Less inputs means more “nonholonomic constraints” on the
system. It happens that the rank of velocity of any Jacobi curve generated
by the system never exceeds the number of inputs.

2 Derivative Curve

Let A be a Lagrangian subspace of W, i.e. A € L(W). For any w € A, the
linear form & (-, w) vanishes on A and thus defines a linear form on W/ A. The
nondegeneracy of & implies that the relation w — (-, w), w € A, induces a
canonical isomorphism A = (W/A)* and, by the conjugation, A* = W/A.

Weset A" = {I" € L(W) : I'NA = 0}, an open everywhere dense subset of
L(W). Let Sym?(A) be the space of self-adjoint linear mappings from A* to
A; this notation reflects the fact that Sym?(A) is the space of quadratic forms
on A* that is the symmetric square of A. A" possesses a canonical structure
of an affine space over the linear space Sym?(A) = Sym?((W/A)*). Indeed,
for any A € A and coset (w+ A) € W/ A, the intersection AN (w4 A) of the
linear subspace A and the affine subspace w+ A in W consists of exactly one
point. To a pair I, A € A™ there corresponds a mapping (I'—A) : W/A — A,
where

(I'=A)w+A)ZE ro@w+A) - An(w+ 4).

It is easy to check that the identification W/A = A* makes (I — A) a self-
adjoint mapping from A* to A. Moreover, given A € A" the correspondence
I' = (I' — A) is a one-to-one mapping of A™ onto Sym?(A) and the axioms
of the affine space are obviously satisfied.

Fixing A € A™ one obtains a canonical identification A = W/A = A*. In
particular, (I'— A) € Sym?(A) turns into the mapping from A to A. For the
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last linear mapping we will use the notation (A, I, A) : A — A. In fact, this
mapping has a much more straightforward description. Namely, the relations
W=A¢A I'0NA =0, imply that I" 1s the graph of a linear mapping from
A to A. Actually, it is the graph of the mapping (A, I', A). In particular,
ker(A, I''AYy = ANT.If ANT =0, then (A, I, A) = (A, ', A)~L.

Let us give coordinate representations of the introduced objects. We may
assume that

W=R"®R™ = {(z,y) :z,y € R™},

(21, 11), (22, y2)) = (&1, y2) — (w2, 1), A=R" S0, A=04R™

Then any I' € A" takes the form I' = {(z,Sz) : * € R"}, where S is a
symmetric m x m matrix. The operator (A, I'; A) : A — A is represented by
the matrix S, while the operator (A, I', A) is represented by the matrix S=1.

The coordinates in A induce the identification of Sym? A with the space of
symmetric m x m matrices. A™ is an affine subspace over Sym?A; we fix A as
the origin in this affine subspace and thus obtain a coordinatization of A™ by
symmetric m x m matrices. In particular, the “point” I' = {(x, Sz) : « € R"}
in A™ is represented by the matrix S=1.

A subspace I'y = {(#, Spx) : # € R"} is transversal to I' if and only if
det(S — Sp) # 0. Let us pick coordinates {z} in I'y and fix A as the origin in
the affine space Forh. In the induced coordinatization of Féh the “point” I is
represented by the matrix (S — Sp)~1.

Let ¢ — A(t) be a smooth curve in L(W). We say that the curve A(-) is
ample at 7 if Ik > 0 such that for any representative A%(-) of the k-jet of
A() at 7, 3t such that A%(t) N A(r) = 0. The curve A(:) is called ample if it
is ample at any point.

We have given an intrinsic definition of an ample curve. In coordinates it
takes the following form: the curve t — {(x, Stx) : « € R"} is ample at 7 if
and only if the function ¢ — det(S; — S;) has a root of finite order at 7.

Assume that A(-) is ample at 7. Then A(t) € A(r)" for all ¢ from a
punctured neighborhood of 7. We obtain the curve t — A(t) € A(r)" in
the affine space A(r)" with the pole at 7. Fixing an “origin” in A(7)™ we
make A(-) a vector function with values in Sym?(A) and with the pole at
7. Such a vector function admits the expansion in the Laurent series at 7.
Obviously, only free term in the Laurent expansion depends on the choice
of the “origin” we did to identify the affine space with the linear one. More
precisely, the addition of a vector to the “origin” results in the addition of
the same vector to the free term in the Laurent expansion. In other words,
for the Laurent expansion of a curve in an affine space, the free term of the
expansion is a point of this affine space while all other terms are elements of
the corresponding linear space. In particular,

oQ

At) = Ag(T) + Z(t—T)ZQi(T), (1)

i=—1

iZ£0
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where Ao(7) € A(T)™, Qi(7) € Sym? A(7).

Assume that the curve A(-) is ample. Then Ao(7) € A(7)™ is defined for
all 7. The curve 7+ Ap(7) is called the derivative curve of A(-).

Another characterization of Ag(r) can be done in terms of the curves
t s (A, A(t), A(7)) in the linear space Hom(A, A(1)), A € A(r)™. These
curves have poles at 7. The Laurent expansion at ¢ = 7 of the vector function
t— (A A(t), A(7)) has zero free term if and only if A = Ag(7).

The coordinate version of the series (2.1) is the Laurent expansion of the
matrix-valued function ¢ — (S; — S;)~! at t = 7, where A(t) = {(z, S;z) :
z € R"}.

3 Curvature operator and regular curves.

Using derivative curve one can construct an operator invariant of the
curve A(t) at any its point. Namely, take velocities A(t) and Ao(t) of A(?)
and its derivative curve Ag(t). Note that A(t) is linear operator from A(t)
to A(t)* and Ag(t) is linear operator from Ag(t) to Ag(¢)*. Since the form
o defines the canonical isomorphism between Ag(¢) and A(t)*, the following

operator R(t) : A(t) = A(t) can be defined:
R(t) = = Ao(t) o A(t) (2)

This operator is called curvature operator of A at t. Note that in the
case of Riemannian geometry the operator R(t) is similar to the so-called
Ricci operator v — RY (¥(t),v)%(t), which appears in the classical Jacobi
equation Vi) Vi)V + RY (¥(t), V)¥(t) = 0 for Jacobi vector fields V' along
the geodesic v(t) (here RY is curvature tensor of Levi-Civita connection V),
see [1]. This is the reason for the sign “—” in (2).

The curvature operator can be effectively used in the case of so-called
regular curves. The curve A(¢) in Lagrange Grassmannian is called regular, if
the quadratic form A(t) is nondegenerated for all . Suppose that the curve
A(+)is regular and has a coordinate representation A(¢) = {(z, Siz) : « € R"},
S; = 0. Then the function ¢ — St_l has a simple pole at { = 7 and one can
get the following formula for the curvature operator (see [1]):

R(t) = ((25)71s)) = ((25) 7 5))” (3)

Note that the right-hand side of (3) is a matrix analog of so-called Schwarz
derivative or Schwarzian . Let us recall that the differential operator:
1 1 1

Som S (SE(£)) = 1 (2’ o

acting on scalar function ¢ is called Schwarzian. The operator S is character-

ized by the following remarkable property: General solution of the equation
Sep = p wrt ¢ is a Mobius transformation (with constant coefficients) of
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some particular solution of this equation. The matrix analog of this operator
has similar property, concerning “matrix Mobius transformation” of the type
(AS+ B)(CS+ D)~L. It implies that in the regular case the curvature opera-
tor R(t) determines the curve completely up to a symplectic transformation.

4 Expansion of the cross-ratio and Ricci curvature.

For the nonregular curve A(t) = {(z, Six) : # € R"}, the function ¢t —
(S: — ST)_1 has a pole of order greater than 1 at 7 and it 1s much more
difficult to compute its Laurent expansion. In particular, as we will see later
in the nonregular case the curvature operator does not determine the curve
up to a symplectic transformation. However, using the notion of cross-ratio
it 1s possible to construct numerical invariants for a very nonrestrictive class
of curves.

Suppose that Ag, Ay, Az, and Az are Lagrangian subspaces of W and
Ao ﬂ/lz = /11 ﬂ/lz = A3 ﬂ/lo = 0. We have <A0,A1,A2> . Ao — /12,
(Ag, Az, Ag) © A2 = Ap. The cross-ratio | Ag, A1, A, /13} of four ”points” Ag,
A1, A, and Az in the Lagrange Grassmannian is, by definition, the following
linear operator in As:

{AO,AMAZ,AS}: <A0aA1aA2><A2aA3aA0>~ (5)

This notion is a “matrix” analog of the classical cross-ratio of four points
in the projective line. Indeed, let A; = {(#, S;z) : « € R™}, then, in coordi-
nates {a}, the cross-ratio takes the form:

VW%AWQ:@rﬁyﬂ&—&m%—%rw%—&) (6)

By construction, all coefficients of the characteristic polynomial of
[/10, Ay, As, /13} are invariants of four subspaces Ap, A1, Az, and As.

Now we are going to show how to use the cross-ratio in order to construct
invariants of the curve A(t) in the Lagrange Grassmannian. Let, as before,
t — {(x,Sz) : € R"} be the coordinate representation of a germ of the
curve A(-).

Assumption 1 For all parameters t, the functions t — det(S; — St,)
have at t =ty zero of the same finite order k.
By the above the function (tg,t1,%2,t3) — det {A(to),/l(tl),/l(tz),/l(tg)

is symplectic invariant of the curve A(t). Using this fact, let us try to find
symplectic invariants of A(¢) that are functions of ¢. For this it is very con-
venient to introduce the following function

det [A(to), A(tr), Atz), Alts)]

g(thtlatZatZ‘}) =In

, (7)

k
|:t0at1at2at3i|
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where |:t0,t1,t2,t3:|2 % 1s the usual cross-ratio of four numbers

to,1,t2,and t5. The function G(tg,1,12,%3) is also a symplectic invariant of
A(t). Tt can be easily expanded in formal Taylor series at any “diagonal” point
(t,t,t,t) and the coefficients of this expansion are invariants of the germ of

A(-) at ¢.
Indeed, by Assumption 1, we have:
det(Sy, — Si,) = (to —11)* X (Lo, t1), X(t,t) #£0 (8)

for any t. It follows that X (¢y,¢1) is a symmetric function (changing the order
in (8) we obtain that X can be symmetric or antisymmetric, but the last case
is impossible by the fact that X (¢,7) # 0 ). Define also the following function

f(to,tl) :ln|X(t0,t1)| (9)

This function is also symmetric, so it can be expanded in the formal Taylor
series at the point (¢,%) in the following way:

oQ

Flto,t) & Y aij()(to =) (tn = 1), i (1) = ayit) (10)

7,7=0

One can easily obtain the following lemma, using the fact that

G(to, t1,ta,t3) = f(to, t1) — f(t1,t2) + f(ta,t3) — f(ts, to)

Lemma 1. For any t the function G(to,t1,12,t3) has the following formal
Taylor expansion at the point (t,¢,1,1):
Glto,trtasta) ~ Y i 5(1)(€5 — €2)(€] — &), (11)
i,7=1
where & =t —¢,1=0,1,2,3.

From (11) it follows that all coefficients «; ;(¢), i,j > 1, are symplectic
invariants of the curve A(t).

Definition 1. The first appearing coefficient a4 1(¢) is called Ricci curvature

of A(t).

In the sequel the Ricci curvature is denoted by p(t). Note that, by a direct
computation, one can get the following relation between p(r) and curvature
operator R(7) for the regular curve: p(r) = %tr R(7). Actually , this relation
justifies the name Ricci curvature for the invariant p(¢).

In some cases we are interested in symplectic invariants of unparametrized
curves in Lagrange Grassmannian (i.e., of one-dimensional submanifolds in
Lagrange Grassmannian). For example, so-called abnormal extremals of vec-
tor distributions and consequently their Jacobi curves a priori have no special

parametrizations.
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Now we want to show how, using the Ricci curvature, one can define a
canonical projective structure on the unparametrized curve A(-). For this let
us check how the Ricci curvature is transformed by a reparametrization of
the curve A(t).

Let t = ¢(7) be a reparametrization and let A(7) = A(¢(7)). Denote by G
the function playing for A(r) the same role as the function G for A(¢). Then
from (7) it follows that

= ([@(To),so(ﬁ),@(Tz),so(fs)]) 12)

g(To,Tl,Tz,Tg) = g(to,tl,tz,tg)—i—k’ hl
[TOa T, T2, T3]

where t; = ¢(7;),¢ = 0,1,2,3. By direct computation it can be shown that the
function (g, 71, 72, 73) — In ([W(T”)’[W(Tl)’W(TQ)’W(TS’)]) has the following Taylor

T0,71,72,73]

expansion up to the order two at the point (7,7, 7, 7):

In (WTO% p(r1), o(r2), o(73)]

[TOa T, T2, T3]

) =Se(r)mo—n2)(m —ns) +...,  (13)

where S¢ is Schwarzian defined by (4) and n; =7 — 7,4 =10,1,2, 3.

Suppose for simplicity that in the original parameter ¢ the Ricci curvature
p(t) = 0 and denote by p(7) the Ricci curvature of the curve A(7). Then from
(11), (12), and (13) it follows easily that:

p(r) = kSe(r). (14)

Conversely, if the Ricci curvature p(t) of the curve A(¢) is not identically
zero we can find at least locally (i.e., in a neighbourhood of given point) a
reparametrization ¢ = ¢(7) such that p(r) = 0 (from (14) it follows that in
this case ¢(7) has to satisfy the equation S(¢~1)(¢) = ﬁkﬁ)

The set of all parametrization of A(-) with Ricci curvature identically
equal to zero defines a projective structure on A(+) (any two parametrization
from this set are transformed one to another by Mébius transformation). We
call it the canonical projective structure of the curve A(-). The parameters of
the canonical projective structure will be called projective parameters.

5 Fundamental form of the unparametrized curve.

The Ricci curvature p(-) is the first coefficient in the Taylor expansion
of the function G at the point (¢,¢,¢,¢). The analysis of the next terms of
this expansion gives the way to find other invariants of the curve A(-) that
do not depend on p(¢). In this section we show how to find candidates for
the ”second” invariant of A(-) and then we construct a special form on un-
parametrized curve A(-) (namely, the differential of order four on A(-) ), which
we call the fundamental form of the curve A(-).

First note that analyzing the expansion (10) one can easily obtain the
following lemma
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Lemma 2. Let «; ;(t) be as in expansion (10). Then the following relation
holds

ai () = (i + i j(8) + (G + Do j41(t) (15)
In particular, from (15) it follows easily that

1 1 3
az1(t) = 74/ (1), a22(t) = gp'(8) — gasa(?) (16)

These relations imply that the function «s1(t) is a candidate for the
second invariant (as well as the function as 2(%)).

Now let ¢ be a projective parameter on A(-). Then by definition p(t) = 0,
and by (16) a2 1(t) = 0 and as»(t) = —%Oégyl(t). This together with (11) and
the fact that as1(t) = aq 3(t) implies that the function G(to,%1,12,t3) has
the following Taylor expansion up to the order four at the point (¢,¢,¢,1):

G(to,t1,t2,t3) = az1(t)pa(€o, €1,62,83) + .. -, (17)
where & = t; —t, ¢ =0,1,2,3, and ps(€o,&1,&2,&3) is a homogeneous poly-
nomial of degree four (more precisely, pa(&n, €1, &2, E3) = (€3 — €3)(€1 — &3) +
(60 —&2)(&F — &8) — 5(&8 - E)(EF - &) -

Let 7 be another projective parameter on A(-) (i.e.,t = (1) = g:j_’g) and
denote by @z 1(7) the function that plays the same role for the curve A(p(7))
as the function as(t) for A(¢). Then from (12), (17), and the fact that the

cross-ratio 1s preserved by Mobius transformations it follows that

as1 (1) (dr)" = a1 (t)(dt)* (18)

It means that the form s 1(¢)(dt)* does not depend on the choice of the
projective parameter ¢t. We will call this form a fundamental form of the curve
A(4).

If ¢ is an arbitrary (not necessarily projective) parameter on the curve
A(+), then the fundamental form in this parameter has to be of the form
A(t)(dt)*, where A(t) is a smooth function (the ”density” of the fundamental
form). For projective parameter A(t) = as1(t). For arbitrary parameter it
can be shown, using (11), (12), that A(t) = az1(t) — 2p(t)? — 50" ().

If A(t) does not change sign, then the canonical length element |A(t)|7 dt
is defined on A(-). The corresponding parameter 7 (i.e., length with respect
to this length element) is called a normal parameter (in particular, it implies

that abnormal extremals of vector distribution may have canonical (normal)
parametrization). Calculating the Ricci curvature p, (7) of A(-) in the normal
parameter, we obtain a functional invariant of the unparametrized curve. We
will call it projective curvature of the unparametrized curve A(:). If ¢t = (1)
is the transition function between a projective parameter ¢ and the normal
parameter 7, then by (14) it follows that p, (7) = k S¢(7).

Note that all constructions of this section can be done for the curve in the
Grassmannian G(m, 2m) ( the set of all m-dimensional subspaces in the 2m-
dimensional linear space) instead of Lagrange Grassmannian by the action of
the group G'L(2m) instead of Symplectic Group.



10 A. Agrachev, I. Zelenko

6 The method of moving frame.

In this section we consider nonregular curves having two functional in-
variants and prove that the above defined invariants p and A constitute a
complete system of symplectic invariants for these curves (completeness of
the system of invariants means that the system defines the curve uniquely up
to a symplectic transformation)

Assume that dimension of the symplectic space W is four and consider
ample curves A(t) in L(W) such that for any ¢ the velocity A(t) is a quadratic
form of rank 1. Without loss of generality we can assume that A(¢) is nonnega-
tive definite for any ¢. Let us fix some parameter 7 and let {(z, S;z) : # € R"}
be a coordinate representation of A(¢) such that S; = 0. Since the curve A(?)
is ample, the curve S; ! has a pole at 7. The velocity %S{l S A(T) = A(r) s
a well defined self-adjoint operator. Moreover, by our assumptions, diltSt_l is
a nonpositive self-adjoint operator of rank 1. So for ¢ # 7 there exists unique,
up to the sign, vector w(t, ) € A(r) such that for any v € A(r)*

d
v, —
< T dt
It is clear that the curve t — w(¢, 1) also has the pole at 7. Suppose

that the order of the pole is equal to . Denote by u(¢, 7) the normalized
curve t — u(t,7) = (t — 7)'w(t, 7) and define the following vectors in A(7):
ej(r) = Fr=rult,m)| _

It is not hard to show that the order of pole of ¢ — w(t,7)att = 7 is
equal to [ if and only if [ is the minimal positive integer such that the vectors
e1(r) and e;(r) are linear independent (in particular, e;(7r) and es(7) are
linear independent if and only if { = 2). Tt implies easily that the set of points
7, where the vectors e1(7) and e2(7) are linear dependent, is a set of isolated
points in R.

St_lv> = —<v,w(t,7')>2 (19)

Assumption 2 A(t) is a curve in L(W) with dimW = 4 such that for
any t the velocity A(t) is a quadratic form of rank 1 and e1(t), ez2(t) are linear
independent.

By the above it is easy to see that if A(-) satisfies the previous assumption,
then it satisfies Assumption 1 with & = 4. So, the invariants p(-) and A(-)
are defined for A(-). Note that the curve A(:) can be described by the curve
t = w(t, ) of the vectors on the plane, i.e. A(:) can be described by two
functions. The natural question is whether (p(-), A(*)) is a complete system
of symplectic invariants of A(-).

Since vector w(t, 7) is defined up to the sign, the vector e;(r) is also de-
fined up to the sign. So, for any 7 one can take (e1(7), e2(7)) or (—e1 (1), —ea(7))
as the canonical bases on the plane A(7). Recall that by constructions of the
section 2 for the curve A(-) the derivative curve Ag(-) is defined and for any 7
the subspaces A(7) and Ag(r) are transversal. So, in addition to the vectors
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e1(7), e2(7) on the plane A(7), one can choose two vectors f1(7) and f2(7) on
the plane Ag(7) such that four vectors (61(7’), ea(t), f1(7), fz(r)) constitute
symplectic basis (or Darboux basis) of W (it means that o(fi(7),e;(7)) =
J; ;). So, the curve A(-) defines a moving frame (61(7'),ez(r),fl(r),fz(r))

and one can derive the structural equation for this frame:

Proposition 2. The frame (61(7’), ea(7), f1(7), fz(r)) satisfies the following

structural equation:

él = 362
€y = %pﬁ +4f5

h

—(BA— 3+ 150")er — plea — ipfo

Jo=—Zpler — Spes — 311

Note that the coefficients in the equation (20) depend only on p and A and
any symplectic basis can be taken as an initial condition of (20). It implies
the following:

Theorem 1. The curve A(:) satisfying Assumption 2 is determined by its
invariants (p(-), A()) uniquely up to the symplectic transformation of W.

Remark 1. It can be shown by a direct calculation that the curvature op-

erator R(1) : A(r) = A(r) of the curve A(-) satisfying Assumption 2 has
7o

the following matrix in the basis (e1(7), e2(7)): R(r) = (8 ‘ég((:)) ), ie, R

depends only on p. This means that in contrast to the regular case, the curva-

ture operator does not determine the curve A(-) uniquely up to a symplectic

transformation.

Theorem 1 implies the following result on unparametrized curves:

Theorem 2. Assume that the curve A(-) satisfies Assumption 2 for some
parametrization and its fundamental form A(t)(dt)* does not vanish. Then
the sign of A(t) and the projective curvature p,(-) determine A(-) uniquely
up to a symplectic transformation of W and a reparametrization.

7 Flat curves.

The following definition is natural.

Definition 2. The curve A(?), satisfying Assumption 2, is called flat if p(¢) =
0, A(t) =0.
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As a consequence of Theorem 1, expansion (11), and structural equation
(20) one can obtain the following characterization of the flat curve:

Theorem 3. The curve A(t), satisfying Assumption 2, is flat if and only if
one of the following condition holds:

1) all coefficients Q;(t) with i > 0 in the Laurent expansion (1) are equal
to zero; .

2) the derivative curve Ag(t) is constant, i.e., Ag(t) =0;

3) for any tg,t1,ta,13

det([/l(to),A(tl),/l(tz),/l(tg)]) = [to,t1, ts, ts]*. (21)

The conditions 1), 2), and 3) are also equivalent for regular curves in
L(W) with symplectic space W of arbitrary dimension (we only need to
replace the power 4 in (21) by dimW). In the last case these conditions are
also equivalent to the fact that curvature operator R(t) is identically equal
to zero.

Conjecture. Suppose that A(t) satisfies Assumption 1. Then the con-
ditions 1), 2), and 3), with the power 4 replaced by k in relation (21), are
equivalent.

If the previous conjecture is true, then one of the conditions 1), 2), or 3)
can be taken as a definition of the flat curve.

Now let us discuss the notion of flatness for unparametrized curves.

Definition 3. An unparametrized curve A(-), satisfying Assumption 2 for
some parametrization, is called flat, if its fundamental form is identically
zero.

It happens that, up to symplectic transformations and reparametrizations,
there exists exactly one maximal flat curve.

Theorem 4. There is an embedding of the real projective line RP* into L(W)
as a flat closed curve endowed with the canonical projective structure; Maslov
wndex of this curve equals 2. All other flat curves are images under symplectic
transformations of L(W) of the segments of this unique one.
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