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NONREGULAR ABNORMAL EXTREMALS
OF 2-DISTRIBUTION: EXISTENCE,

SECOND VARIATION, AND RIGIDITY

I. ZELENKO

ABSTRACT. We study existence and rigidity (W1-isolatedness) of
nonregular abnormal extremals of completely nonholonomic 2-dist-
ribution (nonregularity means that such extremals do not satisfy the
strong generalized Legendre-Clebsch condition). Introducing the no-
tion of diagonal form of the second variation, we generalize some
results of A. Agrachev and A. Sarychev about rigidity of regular ab-
normal extremals to the nonregular case. In order to reduce the sec-
ond variation to the diagonal form, we construct a special curve of
Lagrangian subspaces, a Jacobi curve. We show that certain geomet-
ric properties of this curve (like simplicity) imply the rigidity of the
corresponding abnormal extremal.

1. INTRODUCTION

Let M be a smooth connected n-dimensional manifold. We say that D is a
k-dimensional distribution on M, if for each point q € M a subspace D(q) of
the tangent space TqM is chosen and D(q) depends smoothly on q. In other
words, k-dimensional distribution is a smooth k-dimensional subbundle of
the tangent bundle TM. D can be defined locally by k smooth vector fields
f 1 , • • • ,fk such that D(q) = span(f1(q),... ,fk(q))- A tuple of the fields
( f 1 , • • • , fk) is called a local basis of D. Denote by D1 the lth power of the
distribution D, i.e., D1 = [ D , D l - 1 ] . We will consider so-called completely
nonholonomic (or bracket-generating) distributions. Distribution D is called
completely nonholonomic, if for any q 6 M there exists an integer l(q) such
that Dl(q)(q) = TqM.

A Lipschitzian curve r(T) is called admissible w.r.t. D, if the curve 7
is tangent to D almost everywhere, i.e., j(r) 6 D(J(T)) for almost all r.
The set of all admissible curves 7 : [0,T] —* M can be endowed with the
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W1-topology. In a local basis f 1 , . . . , fk to each admissible curve 7 one can
assign Loo-functions (controls) u 1 , . . . , uk such that 7 = ukfk + ... + Ukfk.
Given a point q0 and a time T denote by tlqo(T) the set of all admissible
curves 7 : [0,T] —> M, starting at q0 and by Fq0,T : ftq0(T) ~ M the end-
point mapping that takes each 7 G fiq0(T) to the endpoint 7(T). Note that
the set fiq0(T) has the structure of (Z00[0,T])k-manifold (after choosing a
local basis the corresponding controls define charts). An admissible curve
7 : [0,T] —» M is called an abnormal extremal of the distribution D, if it
is a critical point of the mapping .F7(0),T, i.e., ImF'Q(0),T (7) ^ T^(T)M.
The term abnormal extremal actually came from the Pontryagin maximum
principle: defining on the set Jq0(T) of all admissible curves 7 : [0,T] —> M
joining q0 to q1 some functional of integral type (for example, length func-
tional w.r.t. to some Riemannian metric on M), we get the optimal control
problem. Abnormal extremals joining q0 with q1 are exactly the extremals
of this problem with vanishing Lagrange multiplier near the functional. Ab-
normal extremal 7 together with corresponding Lagrange multipliers gives
an abnormal lift of 7 to the cotangent bundle T* M (or an abnormal biex-
tremal).

The set £q0(T) is not empty by the well-known Rashevsky-Chow theo-
rem, but this set may cease to be a Banach manifold in a neighborhood of
an abnormal extremals joining 90 to q1. Moreover, an abnormal extremal
7 can be in some sense an isolated point of f2^ ( 0 )(T). More precisely, the
intersection of some W1-neighborhood of 7 in the space of all Lipschitzian
curves with 0q1(T) may contain only smooth reparametrizations of 7. Such
7 is called rigid curve (note that only abnormal extremals can be rigid
curves).

For 2-distributions a special characteristic vector field Ab on the anni-
hilator (D2)1 C T*M of D2 is defined, up to multiplication by a function
without zeros. The set of stationary points of Ab coincides with the anni-
hilator (D3)1 C T*M of D3. The characteristic field Ab has the following
property: all abnormal biextremals that are transversal to (D3)L C T*M
geometrically coincide with integral curves of Ab. One can distinguish regu-
lar and nonregular abnormal biextremals: an abnormal biextremal is called
regular, if it does not contain stationary points of Ab, and nonregular other-
wise. The regular case was studied in the works [1], [9], [14]. In particular, it
was proved that abnormal extremal corresponding to the regular abnormal
biextremal is locally rigid, i.e., its restrictions to the sufficiently small time
intervals are rigid.

Our paper is devoted to the nonregular abnormal biextremals: their exis-
tence and rigidity of the corresponding abnormal extremals. First results of
this type were obtained for the case n = 3 in [15], using local normal forms
of 2-distributions. In the present paper we treat the general n-dimensional
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case by another approach. The characteristic field Ab has 3 types of station-
ary points: elliptic, hyperbolic and parabolic, according to the eigenvalues
of its linearization at these points. First, we prove the existence of the ab-
normal biextremal, passing through a hyperbolic point, and nonexistence
of the abnormal biextremal, passing through an elliptic point. Second, we
prove that if one endpoint of the abnormal biextremal is hyperbolic and all
other points are regular (i.e., nonstationary points of the field Ab)y then the
corresponding abnormal extremal is locally rigid. We associate with such an
abnormal biextremal a special curve of Lagrangian subspaces, Jacobi curve,
in appropriate symplectic space. We give a sufficient condition for rigidity
of the corresponding extremal in terms of this Jacobi curve.

Now few words about the method of proving the rigidity. The rigidity of
the abnormal extremal 7 is equivalent to the isolatedness of 7 on the critical
level set of appropriate endpoint mapping. Using the second differential at
7 of this mapping, one can define a special quadratic form for any abnormal
lift T of 7, called the second variation of F. This quadratic form can be
written as follows:
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The scalar functions P(T) and K(r, s) depend on the basis of D in a neigh-
borhood of 7. The function P(T) has the following property: P(r) = 0 iff
the point T(r) is a stationary point of the field Ab. If P changes signs, it is
similar to the absence of the Legendre condition in the Calculus of Varia-
tions. In this case, as a rule, the corresponding extremal is not locally rigid.
If P does not change sign (for example, if abnormal biextremal is regular or
contains stationary points of the field Ab only as endpoints), we would like
to find a special basis of the distribution D such that

Such a basis is called diagonalizing and we say that the second varia-
tion has in this basis diagonal form. If the diagonalizing basis exists, then
the second variation becomes positive definite in some specially constructed
Hilbert space. We connect the existence of the diagonalizing basis with
some geometric properties (like the simplicity) of the Jacobi curve, men-
tioned above (Theorem 4.1). Finally, using the general theorem about the
isolatedness of points on a critical levels of maps (see [1]) and making ap-
propriate estimates of the second differential and the remainder terms in
the Taylor expansion of the endpont mapping, we prove that the existence
of the diagonalizing basis implies the rigidity (see Appendix B).

As far as we know, the idea to find a diagonalizing basis is new for such
kind of problems (in the classical calculus of variations similar approach



was considered by Clebsch). This is the main idea of our paper. Note
also that the Jacobi curve that we obtain only in order to diagonalize the
second variation, can be obtained, at least for the regular case, from the
general theory of £-derivarives, developed recently in [6] and [7] for studying
feedback invariants of control systems.

Note further that the term "Jacobi curve for the regular abnormal ex-
tremal" in [1] (and earlier in [2]) used for similar but not the same object.
In [1], [2] in order to compute the index of the second variation of the
regular abnormal biextremal F : [0,T] —*T*M the authors introduce a spe-
cial time-dependent linear Hamiltonian system in appropriate symplectic
space (for example, in Tr(0)T* M). By analogy with the classical calculus
of variations this system is called Jacobi equation (note that for the non-
regular case the Jacobi equation has singularities at the appropriate time
moments). The Jacobi curve Jr : [0, T] -> TT(0))T* M of T in [1], [2] is some
discontinuous solution of the Jacobi equation with prescribed initial condi-
tion and jumps (in considered case actually with only one jump). Given
any t G [0,T] denote by It = F \ [ 0 , t ] the restriction of T to the interval [0,t]
and let Jrt, : [0, t] —> Tp (0)T* M be the Jacobi curve of It in the sense of [1],
[2]. The curves Jrt for different t satisfy the same Jacobi equation but have
different initial conditions. It turns out that our Jacobi curve can be natu-
rally identified (by appropriate factorization) with the curve t —* Jr,(t), i.e.,
with the curve consisting of endpoints of the Jacobi curves (in the sense of
[1], [2]) of the restrictions Ft (see also [7]). In contrast to our Jacobi curve
the Jacobi curve of [1], [2] depends on the local basis of the distribution.

2. DESCRIPTION OF ABNORMAL BIEXTREMALS OF 2-DISTRIBUTION

2.1. Characteristic field of abnormal biextremals. Writing the con-
ditions of Pontryagin maximum principle in the abnormal case, one can get
the description of abnormal extremals that gives a simple way to find these
curves. We want to use a coordinate-free version of maximum principle (see
[14]). For this reason we begin with some notations.

Let T*M be the cotangent bundle of the manifold M and let TT : T*M —>
M be the canonical projection. We say that an absolutely continuous curve
T C T*M is a lift of 7 C M if irT = j. Let T(t) = (j(t), \(t)). The curve T
is called nonzero lift of 7 if A(t) ^ 0 for any t.

The annihilator (D l)1- of the l-th power Dl of the distribution D is a
subset of T*M defined by
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Let <r be the canonical symplectic form on T*M. Denote by a1 the restric-
tion of a to DL, a1 = a/Dt. Given a smooth vector field X, denote by HX

the corresponding Hamiltonian function H x ( q , t y = A • X ( q ) and by HX



the Hamiltonian lift of the field X, i.e., a vector field on T*M, satisfying
HX] & = —dHx. Now we are ready to formulate the coordinate-free version
of Pontryagin maximum principle in the abnormal case (see [14], [9]):

Proposition 2.1. Absolutely continuous curve j(t) is abnormal extremal
iff there exists a nonzero lift F(t) C T*M off, satisfying the following 2
conditions:

(1) F(t) lies in D±,
(2) F(t) belongs to Ker a1 a.e.

Remark 2.1. The first condition on F in the previous proposition is actu-
ally the maximality condition for Hamiltonian, the second condition is the
corresponding Hamilton system of equations.

The curve F of the previous proposition is called an abnormal biextremal
or an abnormal lift of 7.

For any point Q e DL one can define the lift HD = HD(Q) C TqT*M
of the distribution D: HD = span{Hf1,.. - H f k } , where ( f 1 , . . . ,fk) is a
basis of D in some neighborhood of irQ in M. This definition does not
depend on the choice of the basis ( f 1 , . . . , f k ) , since H a 1 f 1 +. . .+ a k f k (Q) —

a 1 H f 1 ( Q ) + .. . + akHfk(Q) for any Q € D1, where a 1 , . . . ,ak are arbitrary
smooth functions on M. We will need further also the following formula
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Lemma 2.1. For any Q £ (D)x

Proof. v € Ker a 1 (Q) O (v]cr)(Q)\D i . = 0 <» there exist numbers a 1 , . . . , ak

such that v\cr(Q) = a ldH f 1 (Q) + ... + a k dH f k (Q) = -( a 1 H f 1 (Q) + ... +
a k H f k ( Q ) ) ] o ( Q ) &v = - ( a 1 H f 1 (Q) + ... + akHfk(Q)) e HD(Q], since a
is not a degenerated form.

From now we consider only 2-distributions (i.e., k = 2). Denote by (f, g)
a local basis of the 2-distribution D.

Proposition 2.2. For 2-distribution D the form &i(Q) (where Q 6 DL)
is degenerated (i.e., has nontrivial kernel) iff Q € (D2)1. Moreover, for
any Q e (D2)1

Proof. From (2.4) it follows that



We distinguish two types of points in (.D2)1: the point Q is called regular,
if Q € (D2)x \ (D3)"-, and nonregular, if Q e(D3)L. Note that Q is regular
iff at least one of the numbers d H [ f , g ] H f ( Q ) and dH [ f , g ] H g (Q) is not equal
to zero. First, this gives us that in this case the form dH [ f , g ](Q)\T Q D- ^ 0,
which implies that in a neighborhood of the regular point Q the set (.D2)1

is automatically smooth submanifold of codimension 1 in DL. Second, this
yields that the point Q is regular iff Ho(Q) is transversal to T Q (D 2 ) L in
TQDL. In the nonregular case the set (D2)1 is, in general, not a smooth
manifold. From now we assume that (D2)1 is a smooth submanifold of
codimension 1 in D* also at the nonregular points. In this case the point
Q is nonregular iff H D ( Q ) C TQ(D2)-L by the above. Note that condition
(2.12) below implies the last assumption and that (2.12) holds for generic
2-distributions (see paragraph after Corollary 2.6 below). Hence, for the
generic 2-distribution (D2)1 is a smooth submanifold of codimension 1 in
DL.

An abnormal biextremal F is called regular, if all its points F(r) are reg-
ular points. An abnormal biextremal F is called nonregular, if it contains
at least one nonregular point. The projections of regular and nonregular
abnormal biextremals are called correspondingly regular and nonregular
abnormal extremals (note that abnormal extremals can be regular and non-
regular at the same time).

The intersection H D ( Q ) nTQ(D2)1 defines a direction for any regular
point Q. Therefore, one can define a characteristic field of directions on
(D2)1, assuming that the nonregular points are its singular (stationary)
points. Relation (2.6) shows that any regular abnormal biextremal of D is
an integral curve of this field of directions.
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Thus, if nonzero vector v belongs to Kerr1(Q), then there exist numbers
a and B (a2 + B2 = 0) such that v = aH f (Q) + BHg(Q) and dHf(Q) •
(aHf}(Q) + BH g(Q)) = d H g ( Q ) • (aH f (Q) + BHg(Q)) = 0. Note that
dHj • Hf = dHq • Hg = 0. Using (2.3), we get that for the existence of the
numbers a and B it is necessary that H [ f , g ] ( Q ) = —dH f (Q) • Hg(Q) = 0.
Thus, Q€(D 2 ) x .

If Q € (D2)L, then dHf(Q) • Hg(Q) = dHg(Q) • H f ( Q ) = 0 => HD(Q) C
TQDL. This implies (2.5).

Propositions 2.1 and 2.2 yield the following corollary.

Corollary 2.1. Any abnormal biextremal F of 2-distribution D lies in
(D2)1. In addition, if (D2)1 is a smooth manifold, then



Definition 2.1. A vector field defined on the nice set V is called a char-
acteristic vector field of the distribution D on V, if it coincides, up to
multiplication by a function without zeros, with the field Ab f , g for some
basis (f, g) of D on the projection irV.

Such "local" definition of the characteristic field is actually sufficient for
our purposes. Anyway we want to show, how the characteristic field can be
defined globally, i.e., on the whole (.D2)1.

Proposition 2.3. There exists a vector field Ab on (D2)L such that the
restriction of Ab to any nice set V is a characteristic field of D on V. The
field Ab is unique up to multiplication by a function without zeros.

Proof. The field Ab can be constructed with the help of the standard ar-
guments of partition of unity. One can find a locally finite covering {Va}
of (D2)1 by nice sets. Let ( f a , g a ) be some basis of D on the set irVa.
By (2.9) for any a1 and a2 the vector fields Abfa1,ga1 and Abfa2,ga2 coin-
cide on Va1 n Va2 up to multiplication by a positive function ipa1,a2. Let
{0a} be the partition of unity, associated with the covering {Va}, then the
field Ab = Y^ taAb j a ,ga is defined on the whole (D2)1 and for each a0

a
Ab — yta0Abfa,ga, where *ao = £)a •tl>ao,a<l>a > 0. This implies that Ab is
the vector field what we wanted to find.
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Our aim is to describe the nonregular abnormal biextremal of D. First,
let us define a characteristic vector field of D. By a direct computation, one
can get the following relation for any regular point Q and any basis (f, g)
of D in some neighborhood of nQ on M:

We say that an open set V C (D2)L is nice, if a basis (f, g) of the distribution
D can be chosen on the set irV C M. Denote by Abf,g the following vector
field on V:

Note that the set of the stationary points of Ab f , g coincides with (D3)1 (~i
V. Suppose that (f,g) is another basis of the distribution D in irV, where
f = af + bg and g = cf + dg. By a direct computation we have

where A = ad — bc ̂  0.



The vector field Ab from Proposition 2.3 is called a characteristic vector
field of the distribution D. By the above, the set of stationary points of Ab
coincides with (D)3)1.

Denote o2 = a1|(D2)l. For the regular points Q, using (2.5) and the

transversality of HD to T Q (D 2 ) L , we obtain that Ker<72(Q) is one dimen-
sional and coincides with the direction of the characteristic vector field Ab
at Q. Being the field of kernels of the closed form <r2, the characteristic field
is divergent free, therefore the sum of the eigenvalues of the linearization
of Ab at any stationary point is equal to 0. Since codimension of (D3)1 in
(D2)1 is equal to 2, there are not more than 2 nonzero eigenvalues. Thus,
there are 3 cases:

(1) elliptic, when the nonzero eigenvalues of the linearization of Ab are
purely imaginary and have opposite signs,

(2) hyperbolic, when the nonzero eigenvalues are real and have opposite
signs,

(3) parabolic, when all eigenvalues are equal to 0.
The following lemma is needed for the sequel:

Lemma 2.2. // the characteristic field coincides with Ab f , g in a neigh-
borhood of the nonregular point Q, then nonzero eigenvalues of its lineariza-
tion at Q are equal to the eigenvalues of the following 2 x 2-matrix:
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Proof. Vector field of the form a1v1 +a2v2 (where a1, a2 are some functions
and v1, v2 are independent vector fields) has in its stationary point (i.e.,
where a1 = a2 = 0) the following linearization A:

(here £ <g> v(w) — (£ • w)v for vectors v, w and functional f). Then Im A =
span ( v 1 , v 2 ) , Ker A = (span(da1,da2))1- By a direct computation, it can
be shown that the nonzero eigenvalues are equal to the eigenvalues of 2 x 2-

matrix I , , ) and the corresponding eigenvectors belong

to span (v1, v2). Applying this to the field Abf,g with

and using formula (2.3), one can prove the lemma.

Remark 2.2. From the Jacobi identity, it follows that



This is another proof of the fact that the sum of the eigenvalues of lineariza-
tion of Ab at its stationary point is equal to 0.

Now we analyze separately the hyperbolic and the elliptic cases. We do
not consider the parabolic case.

2.2. Hyperbolic case. The following proposition follows from the well-
known theorems about invariant manifolds (see [10], p. 39; see also [8], p. 57
for the part (a)).

Proposition 2.4. (a) For any hyperbolic point Q there are exactly two
smooth invariant curves of the characteristic field, which contain this point
and are transversal to (D3)^. One of these curves is a stable manifold of
Q and the other is an unstable manifold.

(b) For each point of (D3)1 sufficiently close to Q we take the corre-
sponding stable invariant curve, as described in part (a). Then the union of
all such curves is a smooth manifold of codimension 1 in some neighborhood
of Q in (D2)1. The same is true if we take unstable curves instead of stable.

We call the invariant curves of the part (a) of the previous proposition
separatrices of the hyperbolic point Q (this definition is slightly different
from traditional terminology). Part (a) of the previous proposition and the
fact that for the hyperbolic point HO is transversal to (D3)± in (D2)1

give the following description of abnormal biextremals, passing through a
hyperbolic point.

Corollary 2.2. // an abnormal biextremal F : [0,T] —> (D2)x passes
through a hyperbolic point Q, Q = F(t0), then there exists a neighborhood I0

of to in [ 0 , T ] such that F|I0 belongs to the union of the two separatrices of
the point Q. In other words, FI0 geometrically coincides either with a part of
one separatrix (smooth case) or with the union of parts of both separatrices
of the point Q (nonsmooth case).

Part (b) of Proposition 2.4 will be used in Sec. 4.

2.3. Elliptic case. An abnormal biextremal F is called trivial, if F is just
a point, i.e., F(t) = Q for some Q 6 (D2)1. The aim of this subsection is
to prove the following proposition:

Proposition 2.5. Suppose that for an elliptic point Q the vectors
H f ( Q ) , Hg(Q), H [ f , g ] (Q) are linearly independent. Then there exists a non-
trivial abnormal biextremal passing through Q.

Remark 2.3. The linear independence of the vectors H f ( Q ) , Hg(Q),
H [ f , g ] ( Q ) is equivalent to the following relation
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For the elliptic point HD is transversal to (D3)-1 in (D2)1 (therefore, by
(2.6), nontrivial abnormal biextremal passing through Q cannot "stay" in
(D3)1). This implies the following lemma.

Lemma 2.3. Suppose that all points in a neighborhood U in (D3)1 of
the elliptic point Q are not a- or u-limits of any integral curve of the charac-
teristic field Ab. Then there are no nontrivial abnormal biextremals passing
through Q.

Proof. Suppose that the converse is true. It means that there exists a
nontrivial abnormal biextremal F : [0,T] —* (D2)1 passing through Q,
Q = F(t0). Without loss of generality it can be assumed that all points
of the neighborhood U are elliptic. Let us take a neighborhood V of Q in
(D2)1 such that Vn(D3)1 C U. Then there exists a neigborhood (interval)
I of to in [0,T] such that the restriction F|I of the curve F to I lies in V.
Since F is nontrivial, one can choose the interval I such that F|I is nontrivial.

Suppose that Ireg = {t €/: F(t) is regular}. First we will show that
the set Ireg is not empty. Indeed, if all points of F|I are nonregular, then
F(t) C Tr(t)(D

3)L for a.e. t € I. On the other hand, by (2.6), it follows
that f (t) C HD>(F(t)) for a.e. t. By the assumption F(t) is an elliptic point
(since F(t) C U). Hence the plane HD(T(t)) is transversal to Tr(t)(D

3)L in
T r ( t )(D2)L. This yields that f(t) = 0 for a.e. t € I that contradicts the
assumption of nontriviality of the F|I.

Thus, the set Ireg is a nonempty open subset of /. Let /o be a connected
component of Ireg. Then the curve F|I0 is an integral curve of the field of
directions of Ab and at least one of the endpoints Q0 of I0 is a nonregular
(even elliptic) point contained in U. Thus, Q0 is a- or w-limit of the integral
curve of Ab, which geometrically coincides with FI0. This contradicts the
assumptions of the lemma.

By the previous lemma, it follows that for proving Proposition 2.5 it is
sufficient to show that Q and all points of (D3)1 sufficiently close to Q
are not a- or w-limits of any integral curve of the characteristic field Ab.
Let us forget for a while about the special features of the construction of
characteristic field Ab and consider the following problem:

Let v be a smooth vector field on the m-dimensional manifold N (m > 2),
satisfying the following conditions:

(1) the set of the stationary points of v is a submanifold of N of codi-
mension 2,

(2) the nonzero eigenvalues of the linearization of v at any stationary
point are purely imaginary and have opposite signs.

Under what conditions stationary point Q is not a- or w-limit of any
integral curve of v?
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First of all, diagonalizing simultaneously linear parts of v at all stationary
points close to Q and "killing" the nonresonance terms up to the order 3,
one can find the coordinates ( x 1 , x0, y 1 , . , . , yn-2) in a neighborhood of Q
such that the field v can be expressed by the following system of differential
equations:

where Q = 0, y = (y 1 , . . . , y m - 2 ) , R = Vx2 + x2, i = 1, • •• ,m - 2, w(y),
a(y), and 6(y) are smooth functions, w(y) is a nonzero eigenvalue of the
linearization of v at the point with coordinates ( 0 , 0 , y ) , w(0) ̂  0.

Lemma 2.4. If at least one of the numbers ^i(0) in (2.13) is not equal
to 0, then the point 0 is not a- (or w-) limit of any integral curve of v.

Proof. Let for simplicity <^i(0) ^ 0. Suppose on the contrary that there
exists an integral curve j(t) such that j(t) —> 0 (for the case t —* —oo

t—*+oo
the arguments are similar). From the first two equations of (2.13) it follows
that

Then there exists a constant C > 0 such that

Therefore, R 2 ( t ) > ̂ CT where C1 = j^g)-

Let us consider the third equation of (2.13):

The condition i#i(0) ^ 0 implies that for some neighborhood U of Q there
exists a positive constant C2 such that the right part of (2.14) is greater than
C 2 R 2 . Since by the assumption y(t) —> 0, j(t) 6 U for sufficiently large

t—*+oo

Now we will express the condition of nonvanishing of one of the numbers
(j>i(0) in invariant terms. Let A be linearization of the field v in the point
Q, A is actually linear operator, acting in TQM. ImA denotes the image of
the operator A, ±iw> are nonzero eigenvalues of A.

Definition 2.2. A pair of vector fields ( e 1 , e2) is called compatible with
the field v in the point Q, if ei(Q) € Im A, ei(Q) ^ 0, and Ae^Q) = we2(Q).
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For any such pair we define a subspace of tangent space TQM in the
following way:

Lemma 2.5. The subspace L does not depend on the choice of the pair
of the fields, compatible with the field v in the point Q, i.e., L is an invariant
of v in Q.

Proof. Let us introduce some coordinates (x1 , . . . , xm) in a neighborhood
Q p,

of Q. Let v — V{-z—, e* = ek i~n— in these coordinates, where k = 1, 2 (for
OX{ OX{

the convenience, we omit here and below the sign of summation).
Taking into account that v(Q) = 0, we have:

rt Q

Note that ^— v i (Q)e 1 , k (Q) = Ae1(Q) = we2(Q) and 3—vi(Q)e2,k(Q) =
oxk OXk

Ae 2 (Q) = —we 1 (Q) . Therefore, the third term of sum (2.15) at the point Q
is canceled by the forth term. On the other hand, the second term of (2.15)
at Q belongs to Im A and the first term at Q depends only on the values
of the vectors e1(Q) and e 2 (Q) . This proves that the subspace L does not
depend, in fact, on the fields e1 and e2, but depends only on the vector
e1 (Q) (that defines correspondingly the vector e 2 ( Q ) , e 2 (Q) = Ae 1 (Q) ) .

Let us show now that L does not depend also on e 1 (Q) . It is sufficient
to show that L does not change if we replace the pair (e1 ,e2) by the pair
(e1 ,e2) = (A1e1 + A 2 e 2 , — A2e1 + A 1 e 2 ) , where A1 and A2 are arbitrary con-
stants, nonvanishing simultaneously (the pairs of fields of such type cover all
possible values of e1(Q)). By a direct computation [ e 1 , [e1, v]] + [e2, [e2, v]] —
2w[e1,e2] = (A1 + A 2 ) ( e 1 , [e1,v]] + [e2,[e2,v]] - 2w[e1,e2]). Thus, L does
not depend on e1(Q).

Corollary 2.3. // the field v is represented in some coordinates by
Eq. (2.13), then one of the numbers ^,-(0) is not equal to 0 if and only
if L ^Im A.
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Proof. One can take e1 = -r— and e2 = -—. The pair ( e 1 , e2) is compatible
axi 0x2

with v and

This corollary and Lemma 2.4 imply:

Corollary 2.4. If L ^ Im A, then the point Q is not a- (or w-) limit of
any integral curve of v.

Now we suppose that the field v is represented in the form v = a1e1 +
a2e2, where e1 and e2 are two independent vector fields, a1 and a2 are some
functions (by assumptions on v, the set {a1 = 0} n {a2 = 0} is a manifold
of codimension 2, containing Q).

Lemma 2.6. If the field v is represented in the form v = a1e1 + a2e2,
then the invariant subspace L in Q coincides with the space L — span { e 1 ( Q ) ,
e2(Q),[e1,e2](Q)}.

Proof. It is clear that the subspace L does not change, if instead of the
fields e\ and e2 one take other fields, generating the same 2-distribution,
as the fields e1 and e2. Therefore, it is sufficient to prove the lemma in
the case when Ae1(Q) = we 2 (Q) . By Proposition 2.10, it follows that A =
dai®e1+da2®e2 => da1(e1)e1+da2(e1)e2 = we2 =>• da2(e1) = w. Similarly
da1(e2) = -w. Since a 1 (Q) = a 2 (Q) = 0,the vector ([e1,[e1,a1e1+a2e2]]+
[e2, [e2,a1e1i + e1 + a2e2]] — 2 u [ e 1 , e 2 ] ) ( Q ) € L, and L C L. At the same time,
opening the brackets in the last expression, one can easily obtain that the
coefficient by [e1,e2] is equal to 2(do-2(e1) + da1(e2)-w) = — 2w = 0. Thus,
L = L

Proof of Proposition 2.5. The field Ab in a neighborhood of Q in (D2)1

coincides up to multiplication by function without zeros with Abf,g for some
basis (f, g) of D on irV. The field Abf,g has the form a1v1 + a2v2 with a1 a2,v1

a2, v1, and V2 as in (2.11). Note that [H f ,H g] = H[f.g]. The point Q and
all points of (D3)^ that are sufficiently close to Q satisfy the conditions of
Lemma 2.6. By Lemma 2.3, it follows that there are no nontrivial abnormal
biextremals passing through Q.

Note that if dim D2(7rQ) = 3, then the vectors H f ( Q ) , Hg(Q], and
H [ f , g ] ( Q ) are linearly independent automatically. Hence we have:

Corollary 2.5. If Q is an elliptic point and dim D2(irQ) = 3, then there
are no nontrivial abnormal biextremals, passing through Q.



What happens in the case dimD2(irQ) = 2? It is not hard to see that
the solvability of the equation dHj A dHg A dH[f,g] = 0 is the condition
of codimension n + 1 on the 3-jet of the distribution D. Thus, by Thorn
transversality theorem, it follows that for the generic 2-distribution D all
nonregular points on (D2)-L satisfy condition (2.12). Therefore, we have the
following

Corollary 2.6. For the generic 2-distribution there are no nontrivial
abnormal biextremals passing through elliptic points.

Remark 2.4. The result of this section about hyperbolic and elliptic
points can also be proved, using Roussarie's normal forms for closed dif-
ferential 2-forms obtained in [12] (see [16] for details).

Now let us discuss the case n = 3. In this case the image of (D2)x under
the projection TV is the set of points q 6 M with dim D2(q) = 2. This set
is called Martinet surface. In the local basis (f, g) of D the set S can be
described by the equation det (f, g, [f, g]) = 0. By a direct computation, it
can be shown that linear independence of H f ( Q ) , Hg(Q), and H[f,g](Q) is
equivalent to the following relation
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Assuming that (2.16) holds for the nonregular Q (for the regular Q it
holds automatically), we have that S is a smooth surface in M. Since
X*HD(Q) = D(irQ), one can define the characteristic field of directions L
on S: if Q is a regular point in (D2)1, then D(irQ) is transversal to S in
M and the intersection D(irQ) r\TQM defines the direction of L at TrQ; if
Q is a nonregular point in (D2)1, then D(irQ) = TQS and the point irQ
is by definition a singular (stationary) point of L. The characteristic vector
field C of D on S can be defined in appropriate way, using projection of the
characteristic field of D on (D2)1 to 5. With the help of local normal form
of 2-distribution (see [17], § 19) one can show that if Q is an elliptic point
and condition (2.16) holds at TrQ, then irQ is a stable or unstable point of the
field C. Moreover, irQ is so-called weak degenerated focus of the field C and
the trajectories that have irQ as their a- or w-limit are spirals with infinite
length w.r.t. any Riemannian metric on 5. That was our argument in [15]
to show that such spirals cannot be the abnormal extremals. Proposition 2.5
gives another explanation to this fact: the A-component of the lift to (D2)x

of those spiral does not converge to a finite value (and actually tends to
infinity) when one moves along the spiral towards the point itQ.

3. DIAGONAL FORM OF THE SECOND VARIATION

In this section we begin the investigation of the local rigidity of smooth
abnormal extremals. Let 7 : [0, T] —>• M be a smooth abnormal extremal
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such that 7(1-) = 0 for all r € [0,T], 7(0) = 90 and j(T) = q1. Let
r : [0,T] ->• (D2)-1- be a smooth abnormal lift of 7, F(r) = (7(7-), A(r)). For
simplicity, suppose also that 7 has no self-intersections (i.e., J(T\) ^ J(T^)
for TI ^ T2). A pair of vector fields (/,</) will be called a local basis of the
distribution D related to 7, if (f, g) is a basis of D in some neighborhood
of 7 and 7 is an integral curve of /. Given a local basis (f, g) related to 7,
define a new endpoint mapping F : LOO([0,7*]) —> M in the following way:
F maps a "control" v(-) into the point q(T) of the trajectory q ( . ) of the
system

The curve 7 corresponds to the control v(•) = 0 and abnormality of 7 implies
that {)(•) is a critical point of F.

Since 7 has no self-intersections, in some neighborhood of 7 one can
Q

choose a coordinate system ( x 1 , . . . , x n ) such that / = -—. Let g =
ox i

n Q
Y] <jn-— in these coordinates. Replacing g by the field g — <j>f, one can
t = l OXi
make <j>\ = 0. Therefore, the local basis (/,#) of D related to 7 can be
chosen such that in some coordinates near 7

for some smooth functions 0i, i = 2 , . . . , n. The following proposition gives
a description of rigidity in terms of the corresponding endpoint mapping:

Proposition 3.1. The curve j is rigid iff v is on isolated point on the
critical level F~l(qi) in Loo([0, T]) for the endpoint mapping F, correspond-
ing to the local basis (f,g) of the form (3.2).

Proof. The necessity follows directly from the definition of the rigidity. Let
us prove the sufficiency. Suppose that v is an isolated point of F - 1 ( q 1 ) , then
for some e and any control v(-) ^ v(-) with ||v||oo < e we have F ( v ( - ) ) ^
q1. Suppose that the basis (f, g) has the form (3.2) in the coordinates
( x 1 , . . . ,xn), defined in some neighborhood of 7, and j(t) — ( < , 0 , . . . ,0).
Take the curve 7 such that 7 = u1f + u 2 g, 7(0) = q0, j(T) = q1, and

||u1(-) - l||oo + ||u2(.)||co < —y. Then IMOHoo < ̂  and ||u1(.)||oo >

-. By the assumption, if j(t) = (xi(t),... ,xn(t)), then x 1 ( t ) = u 1 ( t ) .
^ —i
Define 7l(r) = (̂x1̂ )), then 71 (r) = f(Ti(r)) + ^l^g^r)).ui(x\ (r>)
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Note that 71 (T) = j(T) - q1 and ||u(.)|| < e- Therefore, 71 = 7, i.e.,
I I U i ( - ) l l oo

the curve 7 is a reparametrization of 7. Thus, 7 is rigid.

From now, we consider only local bases (f, g) represented in some coordi-
nates near 7 in the form (3.2). Isolatedness of the point on the critical level
of the mapping F is connected with properties of the second differential of
F in this point. The quadratic form A(T) • F^v(-) restricted to Ker FL-,
is called the second variation of the abnormal biextremal F w.r. t. the local
basis (f,g). Note that, for rigid abnormal extremal of corank 1 (i.e., with
codimension of Im F' in Tq1M equal to 1), the second variation of its lift
is necessary either nonnegative or nonpositive (see [3], and also [1] for a
generalization). In what follows we will prove that the curve 7 is rigid, if
the second variation w.r.t. some basis of one of its abnormal lifts F has a
special form (Theorem 3.1).

Expressions for the first differential FL.^ and the second variation of F ob-
tained in [4] (see also [1]) with the help of chronological calculus, developed
in [5] (see also Appendix A for a short survey of some ideas of chronological
calculus). To write these expressions, let us introduce some notations. Let
etf be the flow, generated by the vector field /. Any diffeomorphism P of
M induces operator AdP = (P -1)* in the space of all vector fields on M.
Denote YT = Ad e ( T - T ) f and ZT = Ad erf. It is easy to prove that

for any vector field X, where "dot" means the derivative with respect to T.
Let w(-) = /0 v(r)dr. Then

362
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(in the last expression v(-) belongs to KetFL A Note that actually formulas
(3.4) and (3.5) are figured out implicitly also in Appendix B.

In addition, it can be shown that the curve \(T) of covectors satisfies

Now we want to single out the class of local bases, for which expres-
sion (3.5) looks more simple.

Definition 3.1. A local basis ( f ,g) of the distribution D related to 7 is
called quasi-normal if in some coordinates near 7 we have

Substituting the basis (f,g) of the form (3.7) in (3.4), we get that the
xi-component of F v ( . )v( .) is equal to w(T}. Therefore, we have the following
lemma.

Lemma 3.1. If endpoint mapping F corresponds to a quasi-normal ba-
sis, then for any v(-) 6 Ker Fv(.) we have w(T) = 0.

Consequently, for the endpoint mapping F, corresponding to the quasi-
normal basis (f ,g) , the third term in (3.5) is equal to 0. Combining this
fact with (3.6), we obtain that for all v(•) € KerF^.j

where
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Differentiating the identity A(r) • [f,g] (J(T)) = 0 with respect to r and
using the fact that 7 is an integral curve of /, we have that

Thus, F(r) is a regular point iff P(r) ^ 0. It follows that for regular
abnormal biextremals P(T) ^ 0 for all r. Without loss of generality it can
be assumed in this case that P(r) > c > 0 (this condition is similar to the
strong Legendre condition). Then, using Cauchy-Schwartz inequality, one
can prove that for sufficiently small T there exists a positive constant /?,
such that

Now we suppose that for some TO the point F(T0) is hyperbolic, then
P(T0) = 0. By a direct computation, P'(T0) = — H[f,[g,[f,g]](F(T0)). Differ-
entiating (3.11) with respect to T, we obtain also that H[f,[g,[f,g]](F(T0))(F(T)) = 0.
Combining these two facts, we obtain that matrix (2.10) has the form

at the point F(T0). Since this matrix is not degenerated in the hyperbolic
case, we conclude that

Thus, if TO is inside [0,T], then P(r) changes sign and by arguments sim-
ilar to the classical calculus of variation (see [1], Appendix 2) the second
variation of F is neither nonnegative nor nonpositive in this case. Using the
mentioned above necessary condition for rigidity of an abnormal extremal
of corank 1, we have

Proposition 3.2. // on abnormal extremal 7 has corank 1 and its ab-
normal lift F contains a hyperbolic point inside, then 7 is not locally rigid.

The rest of the paper is devoted to the case, where one endpoint (for
example, F(0)) is hyperbolic and all other points of F are regular. We call it
hyperbolic single-endpoint case. In this case P(0) = 0 and we can suppose
that P(T) > 0 for r > 0 (i.e., Legendre, but not strong Legendre condition
is fulfilled). Note that in the hyperbolic single-endpoint case we cannot
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obtain immediately the estimates, similar to (3.12). The following notion
plays the key role in our work:

Definition 3.2. A quasi-normal basis (f, g) of the distribution D with
respect to the abnormal extremal 7 is called diagonalizing with respect to
the abnormal lift T(r) = (7(7-), A(T)), if

The right-hand side of (3.14) is actually the kernel K(r, s) of (3.8). Thus,
if the basis (f, g) is diagonalizing w.r.t. F, then the corresponding second
variation has the following simple form:

In this case we say that the second variation of T w.r.t. the basis (f,g) has
a diagonal form.

Theorem 3.1. Suppose that an abnormal biextremalT(r) = (7(7-), A(r))
is either regular or has one hyperbolic point as an endpoint. If there exists
a diagonalizing basis w.r.t. T, then the corresponding abnormal extremal 7
is a rigid curve.

For the regular case the existence of diagonalizing basis implies inequal-
ity (3.12). Therefore, for this case the previous theorem follows from [1]
(Theorem 4.8). For the hyperbolic single-endpoint case by (3.13) one have
another estimate from below for the second variation in the diagonal form:

for some positive /?. To prove Theorem 3.1 in this case, we modify the
proof of the mentioned theorem from [1]. This modification is presented in
Appendix B.

Now we want to investigate the question of the existence of diagonalizing
basis. First, for the case n = 3, this question has very simple answer:

Theorem 3.2. If n = 3, the diagonalizing basis exists both for regular
abnormal biextremals and for abnormal biextremals with one hyperbolic point
as an endpoint.



Proof. First, we prove that under the assumption of the theorem there exists
a quasi-normal basis w.r.t. 7. Indeed, in our case the Martinet set S is a
smooth surface. In a neighborhood U of 7 one can choose the coordinates
(x1 ,x2 ,x3) such that S = {x2 = 0} and j(t) = (t,0,0). Let (f,g) be the

Q f\ f\

basis of D in U of the form / = -—, g = 02-5 h §3-5—• In the regular
ox i 0x2 0x3

case D(J(T)) is transversal to Tj^S. Therefore, ^(T^)) ^ 0. Dividing g
by #2> we get a quasi-normal basis.

In the hyperbolic one endpoint case D(q0) = TqoS, hence g 2 ( q 0 ) = 0. Let
a(r) be the angle between D(J(T)) and T^(T)S in the coordinate ( x 1 , x2, x3)
such that the function <*(T) is continuous and a(0) = 0. Since D(y(r)) is
transversal to T^(T)S for any r > 0, there exists a number 0 < /? < TT
such that |a(r)| < /?. Take the surface S' = {ctg /3x2 = x3}. Then by
the construction D(7(r)) is transversal to T7(r)S' for any r. Defining near
7 the coordinates (x 1 ,x 2 ,x 3 ) such that S' = {x'2 = 0}, one can find a
quasi-normal basis w.r.t. 7 by the same argument as in the regular case.

To complete the proof, we show that any quasi-normal basis w.r.t. 7 is
diagonalizing w.r.t. F. In fact, suppose that the basis (f, g) has the form

f\ r\ f\ f\ f\

f = Jx~^9 = d^ + 93dx~3-
 Then [f'9] = a^ff3(T(r)W On the other

hand, from abnormality of 7 it follows that, in the case of n = 3, [f, g](f(T))
belongs to span (f(7(r)), 0(7(7))) for any r. Therefore, [f,g](j(r)) = 0.
This implies (3.14). Thus, the basis ( f , g ) is diagonalizing w.r.t. F.

4. JACOBI CURVE

For n > 3 we will relate the existence of a diagonalizing basis (both in
regular and hyperbolic one endpoint cases) with the properties of a special
curve of Lagrangian subspaces in appropriate symplectic space, so-called
Jacobi curve, which will be associated with any abnormal biextremal.

Now we want to describe a construction of Jacobi curve. For any point
F(r) let VT be a vertical subspace of Tr(T)(T*M), i.e., Ker7r,(r(r)). Let
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Note that actually

By the construction
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Now we consider separately regular and hyperbolic single-endpoint cases.

4.1. Regular case. If the point F(r) is regular, there exists a vector
e £ HD(T(r) such that

From (4.4) and (4.5) it follows that

Note that if F(r) = (7(7-), A(r)) is an abnormal lift of 7, then ra(r) = (7(7-),
aA(r)) is also an abnormal lift of 7 for any number a ^ 0. One can choose
a characteristic field Ab in a neighborhood of F such that all curves F0

that are close to F are integral curves of Ab. Let ht be a flow, generated
by Ab. We translate subspaces LT by the flow hT to the beginning of F,
namely, we define subspaces L'T = h - 1 L T C Tr(0)(D2)"L- Given the point
Q = ( q , A ) in T*M, denote by Q € TQ(T*M) the tangent vector to the
curve a —» (<?,aA) at the point a = 1. By the construction F(0) belongs to
L'T for any r. Denote by (f(0))^ = {v € Tr(0)(D2)-L : o-2(v,f(0)) = 0}. Let
W = (f(0))z/span(f(0),f(0)) and let p be the projection from (f(0))/

to W. Recall that Ker<T2(F(r)) = span(F(r)). Thus, the antisymmetric
form A(v1,v2) = a 2 ( p - 1 v 1 , p - 1 v 2 ) is well defined and nondegenerate on W.
Hence the pair (W, A) is a symplectic space with dim W = 2(n — 3). Define

Using (4.6) and the fact that span (F(0), F(0)) C L'T for any r, we obtain
that dimLT = n - 3. It follows from (4.3) that A.\ir = 0. Therefore the
curve T —>• LT is a curve of Lagrangian subspaces of W.

Definition 4.1. The curve T —>• Lr is called Jacobi curve of the regular
abnormal biextremals F.

Remark 4.1. In the construction of the Jacobi curve of regular biex-
tremals we have a freedom to choose the characteristic field Ab, Since
we make factorization by span(F(0)) on some step of the construction, the
Jacobi curve finally does not depend on this choice.

4.2. Hyperbolic single-endpoint case. For the sake of the definite-
ness, suppose that the characteristic field Ab of D is chosen such that F(r)
geometrically coincide with a stable invariant curve of F(0). All points of
some neighborhood of F(0) in (D3)*- are hyperbolic. Denote by Sep the
union of stable invariant curves of all these points. Using Proposition 2.4,
we obtain that Sep is a smooth manifold in the neighborhood of F.
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Though the restriction of the characteristic vector field Ab to Sep has
stationary points, we can get rid of them by taking another vector field Ab
on Sep without stationary points, but such that Ab and Ab define the same
field of directions on Sep . As in the regular case, we can choose the field Ab
in a neighborhood of F such that all curves Ta close to F are integral curves
of Ab. To construct Jacobi curve in the hyperbolic one endpoint case we
want to use a scheme similar to the regular case, taking the manifold Sep
instead of (D2)"1 and the field Ab instead of Ab. The flow on Sep generated
by Ab is also denoted by ht.

Now we want to divide the points of (D3)1 into two types: the point
Q € (D3)x is called of the type (2,3), if dim D2(;rg) = 3, and of tie type
(2,2), if dim D2(7rQ) = 2.

Suppose that F(0) is the point of the type (2,3), then Tr^-D1) =
rr(0)(D

2)-L + span (f (0)). Now if we recall (4.4), we get as in the regular
case that

If F(0) is the point of the type (2,2), then the space (V0 f~l Tr(0)(D)J- +
HD(F(0))) is tangent to (D2)1. Hence

Let

There are 2 possibilities:
(1) LT is transversal to Tr(T)(Sep) in Tr(T)(D

2)1,
(2)LTcT r ( T )(Sep).

Definition 4.2. If Lr satisfies condition (1), we say that the point F(r)
of the abnormal biextremal satisfies the transversaftty condition.

Note that F(0) satisfies the transversality condition. Actually, the second
separatrix of F(0) is transversal to Sep. On the other hand, the tangent
vector to this separatrix at the point F(0) is contained in HD(F(0) C LQ.
Thus, L0 is transversal to Tr(0)Sep. Let F(0) be of the type (2,3). Taking
for any point F(r) the subspace LT, we obtain a smooth (n— l)-dimensional
bundle over the curve F (see (4.6) and (4.8)). This proves that:

Proposition 4.1. //F(0) is the hyperbolic point of the type (2,3), then
F(r) satisfies the transversality condition for sufficiently small r.



Remark 4.2. For F(0) of the type (2,2) the previous proposition in gen-
eral is not true, since we have the jump of the dimension of the spaces LT

at T — 0 (see (4.9)). For instance, it is easy to prove that if n = 3, F(r)
does not satisfy the transversality condition for any T > 0.

Denote by <r3 = <7|sep and let KT = Ker <73(r(r)). Since dimSep = In—4
and F(r) € Kr, then dim KT > 2.

Lemma 4.1. dimKr = 2 for all r e [0, T].

Proof. For r > 0 it follows immediately from the fact that Ker <72(r(r)) =
span (r(r)). For r = 0 we use the fact that the flow ht preserves the form
<T3.

Now let us prove the following two propositions:

Proposition 4.2. For r > 0, LT D KT = span (F(r)) iff the point F(r)
satisfies the transversality condition.

Proposition 4.3. L0C\K0 = span (F(0)) iff the point F(0) is a hyperbolic
point of the type (2,3).

Proof of Proposition 4.2. Sufficiency. Suppose that the point F(r) satisfies
the transversality condition. Let a vector e £ LT n KT. From the transver-
sality condition there exists ei 6 LT such that Tr(T)(D2)1 = Tp(T)(Sep) +
span(e1). From (4.3) it follows that a2(e1 ,e1) = 0, hence e 6 Ker<r2. Recall
that for r > 0 the point F(r) is regular and Ker a2(r(r)) = span(f(r)).
This implies that e € span (F(r)) =>• LT n KT = span (F(r)).

Necessity. Taking the factorization of Tp(T)(Sep) by KT, we get a sym-
plectic space of dimension dimTr(T)(Sep) — dim KT = 2n — 6. The im-
age of LT under this factorization is an isotropic subspace of the obtained
symplectic space. Thus, its dimension is not greater than n — 3. On the
other hand, the dimension of this space is equal to dim LT n Tr(T)(Sep) —
dim LT n KT = dim LT n Tr(T)(Sep) - 1. If LT n KT = span (F(r)), we have
dimLTnTr(r)(Sep) < n—2. Combining this inequality and (4.6), we obtain
that LT is transversal to Tr(T)(Sep) in Tr(T)(D

2)1.

Proof of Proposition 4.3. Sufficiency. Suppose that the point F(0) is of the
type (2,3). Let a vector e 6 LT C\KT. Since F(0) satisfies the transversality
condition, then e 6 Ker a2 (see the previous proof). Note that Tr(0)(D"L) =
Tr(0)(D2)-I+span(f(0)) and (f(0)J(r)|ir = 0. Therefore, e € Ker a1. Using

(2.5), we have e e HD(F(0)). Since HD(r(0))nTr(0)Sep = span(F(0)), we
obtain that e € F(0) =>• L0 n K0 = span (F(0)).

Necessity. If L0 < K0 = span (F(0)), then, as in the previous proof,

dim L0 n Tr(0)(Sep) < n — 2. This implies that dim L0 < n — 1. But,
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in the case of F(0) of the type (2,2), dim L0 = n. Therefore, the point F(0)
is necessarily of the type (2,3).

As in the regular case we can translate LT to the beginning of F: L'T =
h - 1 L T . Denote by (f(0))^ = {v € Tr(0)(Sep) : a2(v,f(0)) = 0}. Let
W = (f(0))//span(f(0),K0) and let p be the projection from (f(0))z to
W. The antisymmetric form A. (V 1 ,V 2 ) = a 2(p - 1v 1 ,p - 1v 2) is well defined
and nondegenerate on W. Hence the pair (W, A) is a symplectic space. If
f(0) does not belong to K0, then

If f(0) belongs to K0, then

Lemma 4.2. If f(0) belongs to K0, then the point F(0) is of the type
(2,2) and F(r) does not satisfy the transversality condition for any T > 0.

Proof. By the construction, f(0) e L; for all r =>• K0 C LT =*• KT C LT.
Now using Propositions 4.2 and 4.3, we obtain that F(0) is of the type (2,2)
and F(r) does not satisfy the transversality condition for any r > 0.

Define

The spaces LT are obviously isotropic subspaces of W. Let us prove

Proposition 4.4. The subspace LT is a Lagrangian subspace of W for
any T.

Proof. Let us check all possibilities: (1) Suppose that F(0) belongs to K0.
We need to prove that dim LT = n — 3 (see (4.11)).

Using Lemma 4.2, formula (4.9), and the fact that L0 is transversal to
Tr(T)Sep, we obtain that

Consequently, dim L0 — n — 3.
If r > 0, then KT C LT and LT = LT. By (4.6), we have dim LT = n - 3.
(2) Suppose that f(0) does not belong to K0, then dim span(f(0),K0) =

3. We need to prove that dim L,- = n — 4 (see (4.10)).
Let F(0) be of the type (2,2). Then span(f(0), K0) C L'0 and by (4.13),

dimio = n — 4.
Let F(0) be of the type (2,3). Then by the assumption



and by formula (4.8) dimL'0 = n — 2 =*• dim L0 = n — 4.
Let T > 0 and let the point F(r) satisfy the transversality condition, then

by (4.6), it follows that dim L'T — n — 2, and from Proposition 4.2 we obtain
that dim L'T D span (f(0), K0) = 2. Therefore, dim LT = n - 4.

Let T > 0 and let the point F(r) do not satisfy transversality condition.
Then by (4.6), it follows that dim Lr = n — 1, and from Proposition 4.2 we
obtain that dim L'T n span (f(0), K0) = 3. Therefore, dim LT = n - 4.

Definition 4.3. The curve r —> LT is called Jacobi curve of the abnor-
mal biextremals F with one hyperbolic endpoint.

Remark 4.3. By the same reason, as in the regular case (see Remark
4.1), the Jacobi curve of biextremals with one hyperbolic endpoint does not
depend on a freedom in the choice of the field Ab on Sep .

Remark 4.4. In the regular case, the Jacobi curve is a continuous curve
of Lagrangian Grassmannian of W. In the hyperbolic one endpoint case,
the Jacobi curve can be discontinuous at r = 0, if F(0) is of the type (2,2),
or at T > 0, if F(r) does not satisfy the transversality condition, since the
spaces LT and LT n KT have jumps of dimension at these points.

Recall that the curve of Lagrangian subspaces is called simple, if there
exists a Lagrangian subspace transversal to any subspace of the curve.

Theorem 4.1. (Sufficient condition for the existence of a diagonalizing
basis.) If the Jacobi curve of the abnormal biextremalT is simple then

(1) in the regular case the diagonalizing basis w.r.t.. F exists;
(2) tn the case of hyperbolic one endpoint of the type (2,3) (n > 3) the

same holds provided that any point of F satisfies the transversality condition.

Proof. To give the proof in the regular and nonregular cases simultaneously,
let us introduce some common notations. Denote by E the space Tr(0)(D

2)"L

in the regular case and the space Tr(0)Sep in the nonregular case. In the
regular case we also write KT instead of span(F(r)), that is the kernel of
the form <T2(F(r)).

Let A be the Lagrangian subspace in W that is transversal to any LT

and let p-1 A be its preimage under the projection of (f(0))^ to W. Take a
vector e transversal to (f(0))^ in E and denote by e* = {v € E : <r(v, e) =
0}. Let A = p-1Ane^ +span (e). Since F(0) $ K0 in the considered cases,
we have
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By the construction, dim A = n — 1 and <r(F(0))|^ = 0. Translating the
space A by the flow hT, we obtain the spaces AT = hr*A.
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Lemma 4.3. Ar n Vr - 0.

Proof. By the construction AnL'T C span (f (0), K0). From (4.14) it follows
that A n L'r C K0 n L'T. Translating this relation by the flow hr and using
in the nonregular case Propositions 4.2 and 4.3, we obtain

Therefore, AT n Vr C span (f (r)) n VT = 0.

Let S be a smooth submanifold of E of dimension n — 2, such that
Tr(0)S C A and S is transversal to F at the point F(0). Consider the set
E, obtained by translation of S along the flow ht:

E is submanifold in the neighborhood of F and TT(T)£ = AT.
Let N = :rE be the projection of E to the base M and let 7r*Ar =

6T. Using Lemma 4.3 and implicit function theorem, we obtain that the
projection ?r has an inverse Vp : N —*• E. One can define a differential 1-form
X on N such that ^(q) = (q, A(g)) Vq € N (the manifold E is actually the
graph of the form A). By the construction, the flow ht can be restricted to E.
The projection TT : E —* N defines the flow Pt = irhT of abnormal extremals
on N. One can introduce coordinates ( x 1 , . . . , xn) in the neighborhood of

Q

7 on M such that N = {#2 = 0}, the field -5— is tangent to D and the flow
ox i

c\

Pt is generated by the field -—. In these coordinates
ox i

f\
(i.e., without -z—).

0x3
Note that dX = **(cr). This yields that

for all re [0,T].
The basis of the distribution D can be chosen in the form (3.2):
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Lemma 4.4. <fo(7(r)) ± 0 Vr e [0,T].

/Yoo/. Assume that 0(ro) = 0 for some T0, then g ( j ( r 0 ) ) € 6To. It implies
the existence of the vector // € ATo such that

Therefore from (4.2) p, € LTo • Thus, /i € ATo n LTo. Using (4.15), we obtain
that fi £ span(F(ro)). Consequently, TT*// € span(/(7(ro)) that contradicts
to (4.18).

Thus, $2(7(1")) ^ 0. Dividing g by ^(^(T)), we obtain a quasi-normal
basis:

« d ~\n \
•n— f. ) C 5T for all r. Combining
QX\ * i=3s

this and the fact that ZT[f,g](j(Q)) = P~t
l[f,g](j(T)), we obtain

This formula and (4.17) imply that

By the construction, the curve T —> (PTq, A(PTg)) is an abnormal biex-
tremal for any Q € N. Using (3.6), one can easily obtain that

for any q e N. Recall that E C (D2)1, therefore X(q)([f,g]) = 0 for any
q € N. Consequently,

Formulas (4.19) and (4.21) imply that the derivative of the function
X(q)(ZT[f,g]) at the point q — 7(0) in the direction Z,[f,g](j(Q)} is equal
to 0 for any T and s. We denote this directional derivative by



for all 0 < T, s < T. Thus, the basis ( f ,g) is diagonalizing w.r.t. F.

Now we formulate the main result of our paper. This result is an immediate
corollary of Theorems 3.1, 3.2, and 4.1.

Theorem 4.2. Let F(r) = (J(T), X(T)) be an abnormal biextremal. Then

(a) Let n = 3. //T is regular or has one hyperbolic point as an endpoint,
then 7 is rigid.

(b) Let n > 3. If the Jacobi curve of is simple, then
(1) in the regular case 7 is rigid,
(2) in the case of hyperbolic one endpoint of the type (2,3) 7 is

rigid provided that any point of F satisfies the transversality
condition.

Proposition 4.1, Remark 4.4, and the fact that any sufficiently small
part of a continuous curve in Lagrangian Grassmannian is simple imply the
following result:

Corollary 4.1. if n > 3 and F(r) = (7(7"), ^(t)) is an abnormal biex-
tremal which is either regular or has one hyperbolic point of the type (2,3)
as an endpoint, then 7 is locally rigid.

Remark 4.5. In [15], in addition to part (a) of Theorem 4.2, we proved
that for n = 3 if both endpoints of F are hyperbolic and all other points
of F are regular, then abnormal extremal 7 is rigid. We believe that this
result can be also obtained by the methods of the present paper.

5. APPENDIX A

In this section we give a short list of notation and formulas from chrono-
logical calculus, developed in [5]. Geometrical objects, like C°° mappings
and vector fields on the manifold M can be identified with certain linear
operators, acting on C°°(M). Namely, a C°° mapping P on M can be asso-
ciated with the shift operator, given by the following rule: P<j>(q) = <l>(Pq)
for any <j> €. C°°(M) and q £ M. Any point qo £ M is associated with
the constant mapping that maps whole M to qo and this mapping can be
identified with the operator (or functional) <j> —* <f>(qo) on C°°(M). This
operator will be also denoted by qo. A smooth vector field X on M is on
one hand a smooth section of the tangent bundle TM and on the other

Finally, using the well-known Cartan identity and (4.20), we obtain:
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hand it is a first order differential operator on M. Further, one can identify
a nonautonomic ordinary differential equation

with the operator differential equation

where Xt = X(-,t), Pt is an operator associated with the flow, generated by
(5.1), and the sign "o" means the composition of operators, L1 o L 2 ( < j ) ) =
L 1 ( L 2 ( < j > ) ) . Operator Pt is called the right chronological exponent of Xt and

t
denoted by exp1 / XTdr.

o
Integration of (5.2) by the parameter gives us:

The advantage of operator equation (5.2) in comparison with (5.1) is the
linearity of the operators Pt. Thus, one can iterate equation (5.3) arbitrary
number of times. After m iterations we get the following Volterra expansion
of the flow exp1 JQ XTdr:

where the remainder Rm+1 has the form:

It is natural to denote the flow, generated by time-independent vector field
Xbyetx.

Let || • ||S|K be some seminorm that defines the topology of the uniform
convergence on the compact set K C M of all derivatives up to the order
s. One can define the following family of seminorms on the set of all vector
fields on M: \]X\\,,K = sup{||X^||s^ : M,+I,K = l}- Using analog of
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Gronwall lemma, one can obtain the following estimates of the remainder
Rm+i'- for any function </> € C°°(M), compact set K C M, and integer
nonnegative number s there exist constants C1 and C2 and a compact set
K', K C K', such that

t

Note that if M = M" and R = / ||XT||0>Rndr < oo, then the set OR(K) of
o

all points with a distance to K not greater than R can be taken as the set
K1 in (5.6).

Given a diffeomorphism P and a vector field X on M denote by Ad P
and ad X the following two operators on the set of all vector fields on M:
AdPY = PoYoP-1 - P-1Y and (adX)Y = [X,Y]. Perturbation

* t
exp* f ( X T + YT) dr of the flow exfS / XT dr can be represented as the com-

o o
position of two flows such that one of them is the original flow exp* fQ Xrdr.
Namely,

Applying one of these formulas to the one-parameter perturbation

and expanding the chronological exponents with Yr to the Volterra expan-
sion, one can obtain the Taylor expansion of the family in e. Thus, formulas
(5.7), (5.8), and expansion (5.4) give the method of finding first, second and
etc. differentials of the endpoint mapping.

Finally, if Pt — exp/0 Xr dr, then by a direct calculation:
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or — Ad.Pt = Ad Pt ad.Xt Just as for (5.2), we can write

For time independent flows X this relation has the form Ad etx = et ad x.
This notation will be very useful in the sequel.

6. APPENDIX B

In this appendix we prove Theorem 3.1 in the hyperbolic one endpoint
case. As was mentioned above, the proof is actually a modification of the
proof of the analogous result for the regular case, established in [1] (The-
orem 4.8). We use the following sufficient condition for isolated points on
the critical level set (see [1], [3]):

Theorem 6.1. Let a Banach space X is densely imbedded into a Hilbert
space H. Lei a mapping T : X —* Rm be Frechet differentiable at a point
x € X, which is critical point of F, i.e., \-f — 0 for some nonzero A e Rm.
//:

(2) the function A • f admits Taylor expansion at x of the form

(3) the quadratic form X - F " ( x ) ( x , x ) admits a continuous extension from
X onto H and is H-positive definite on Ker f'(x), i.e., for some j3 > 0

then x is an isolated point on the level set F - 1 ( f ( x ) ) in X.

Proof of Theorem 3.1. Suppose that (f, g) is a diagonalizing basis in a neigh-
borhood of the curve 7 and F is the corresponding endpoint mapping. With-
out loss of the generality it can be assumed that the image of F lies in some
neighborhood of 7. Coordinatizing this neighborhood, we can suppose that
the mapping F is actually into Rn. We will verify the conditions of the pre-
vious theorem for the endpoint mapping F, X = Loo[0,T] and the Hilbert
space H that we want to describe now.

The space Ker F0(.) is a subspace of finite codimension in Loo[0,T]. Let
the space Z be the complement of Ker Fv(.) in Loo[0,T]. Any v(-) e Loo[0,T]
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can be uniquely represented in the form v(-) = v1(-) + v 2 ( - ) , where v1(-) 6
Ker FL^ and v2(-) € Z• Let us define the following two norms:

where w(•) = / v(r)dr. Note that the norm j| • ||2 is at least not weaker, than
o

|| • ||1. In general, these norms are not equivalent, since the first differential
F0(.) in the general case is not continuous in the norm || • ||1.

We claim that the completion of Loo[0, T] in the norm || • ||2 can be taken
as the space H. Further, we write || • ||H instead of || • ||2 and denote by H1

the completion of Loo[0,T] in the norm || • ||1.
First note that inequality (6.3) holds, since it is equivalent to (3.16).

Since all estimates that we need are given in terms of the primitive w>(-) of
the control v(-), it is convenient to write the endpoint mapping F in terms of
w(-) instead of v(-). This can be done with the help of so-called integration
by parts formula for a chronological exponential (see [13]). We derive:

where YT = e(T - t) a d f. Expanding all chronological and ordinary exponen-
tials in the last formula, one can obtain the following expansion:
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where the remainder R3 admits the following estimate for all controls v(-),
satisfying, for example, ||v(-)||oo < 1:
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Using consequently the inequality \W(T)\ < r||v(-)||oo and Cauchy-Schwartz
inequality, one can estimate each term of I1 and I2 and obtain

For example,

or
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Using estimates (6.7)-(6.10) and expansion (6.6), one can easily obtain
estimates (6.1) and (6.2).

To complete the proof, it remains to check that the quadratic form A(T) •
Ft',* is continuous in H. Define the following two quadratic forms

Prove that the form Q2 is continuous even in H\. From the expression
for F^ in (6.6) it follows that

Note that YTg = YT[f,g}. Therefore,

and A(T) • [Y,g, Y T g ] ( q 1 ) = K(r,s), where the functions P(T) and K(r,s)
are the same as in Sec. 3. Denote by R(T) = A(T) • [ g , Y T g ] ( q 1 ) . By the
assumption, the second variation is diagonalizable, i.e., K(T, s) = 0. Hence
the form Q\ can be written as follows

Let us recall that P(0) = 0. If we prove that R(0) = 0, then the form
Q2 is obviously continuous in H1. Let us prove that R(0) = 0. Indeed,
denote by <t>(s) = A(T) - (Y ,g ,Y 0 g](q 1 ) , then 0(0) = A(T) - [Y 0 g ,Y 0 g] (q 1 ) =
A(0) • [g, [ f , g ] ] ( q 0 ) = P(0) = 0 and 0'(s) = A - \Y,g,Y0g](q1) = K ( s , 0 ) = 0
for all s => A(T) • [g, Yog] (q 1 ) = R(0) = 0. Now we prove continuity of
the form Q1 in H. Denote by Q 1 ( v , u ) = A(T) • F v ( . ) ) v ( - ) o Fv(.))u(.). Let
v = v1 + v2, where vi € Ker F- and v2 6 Z. Then



It is clear that Qi (v 1 ) — 0 and Q1(v1,v2) = 0. Since Z is finite dimensional,
then the form Q 3 ( v ) = Q 1 (v 2 ) is continuous in H.

Finally , let us show that the form Q 4 ( v ) = Q 1 ( V 2 , V 1 } is continuous
even in H1. Since Q 1 ( v 1 , v2) vanishes, we can subtract it from Q 1 (v 2 , v1) to
obtain commutators:

where w1 and w2 are primitives of v1 and v2 (here we also use that A(T) •
{ Y > g , Y T g ] ( q 1 ) = K(T,S) = 0). The fact that R(0) = 0 implies again conti-
nuity of Q4 in H1. This completes the proof of the continuity of A(T) • F-,-,
in H. The theorem is proved.
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