Research Profiles
Monographs
F. Baudier and G. Lancien
near completion, to appear in the series "Cours Spécialisés, Société Mathématique de France".
Florent P. Baudier
in progress.
Selected Articles
Full publication list
Umbel convexity and the geometry of trees
(with C. Gartland)
Adv. Math. 438 (2024), Paper No. 109461s, 64 pp. [journal link] [arXiv]
L1-distortion of Wasserstein Metrics: a Tale of Two Dimensions
(with C. Gartland and Th. Schlumprecht)
Trans. Amer. Math. Soc. Ser. B 10 (2023), 1077-1118. [journal link] [arXiv]
Uniform Roe algebras over uniformly locally finite metric spaces are rigid
(with B. de Mendonça Braga, Ilijas Farah, Ana Khukhro, Alessandro Vignati, Rufus Willett)
Invent. Math. 230 (2022), no.3, 1071-1100. [journal link] [arXiv]
On the bi-Lipschitz geometry of lamplighter graphs
(with P. Motakis, Th. Schlumprecht, and A. Zsák)
Discrete Comput. Geom. 66, (2021), no. 1, 203-235 [online access] [arXiv]
A new coarsely rigid class of Banach spaces
(with G. Lancien, P. Motakis, and Th. Schlumprecht)
J. Inst. Math. Jussieu 20 (2021), no. 5, 1729-1747. [journal link] [arXiv]
The coarse geometry of Tsirelson's space and applications
(with G. Lancien and Th. Schlumprecht)
J. Am. Math. Soc. 31, (2018), no. 3, 699-717 [online access] [arXiv]
On the metric geometry of the countably branching diamond graphs
(with R. Causey, S. Dilworth, D. Kutzarova, N. L. Randrianarivony, Th. Schlumprecht, and S. Zhang)
J. Funct. Anal. 273 (2017), no. 10, 3150-3199 [online access] [arXiv]
A new metric invariant for Banach spaces
(with N. J. Kalton and G. Lancien)
Studia Math. 199 (2010), no. 1, 73-94. [open access] [arXiv]
Embeddings of locally finite metric spaces into Banach spaces
(with G. Lancien)
Proc. Amer. Math. Soc. 136 (2008), 1029-1033. [open access] [arXiv]
Metrical characterization of super-reflexivity and linear type of Banach spaces
Archiv Math. 89 (2007), 419-429. [open access] [arXiv]
Reviews
Research interests
Geometry of graphs and metric spaces
(metric embeddability of graphs, groups, and general metric spaces, geometric properties of metric spaces...)
Quantitative metric geometry
(low distortion embeddings of finite metric spaces, compression exponents, metric invariants, concentration inequalities, probabilistic methods...)
Nonlinear geometry of Banach space
(nonlinear (e.g. Lipschitz,uniform,coarse) classification, Ribe Program...)
Banach Space Theory
(infinite dimensional, local, or asymptotic structures...)
Applications of the above to geometric group theory, topology, and theoretical computer science